
How to Use Bitcoin to Play Internet Poker

Ranjit Kumaresan
ranjit@cs.technion.ac.il

Tal Moran
talm@idc.ac.il

Iddo Bentov
idddo@cs.technion.ac.il

Abstract

Back and Bentov (arXiv 2014) and Andrychowicz et al. (Security and Privacy 2014) introduced techniques to
perform secure multiparty computations on Bitcoin. Among other things, these works constructed lottery protocols
that ensure that any party that aborts after learning the outcome pays a monetary penalty to all other parties. Following
this, Andrychowicz et al. (Bitcoin Workshop 2014) and concurrently Bentov and Kumaresan (Crypto 2014) extended
the solution to arbitrary secure function evaluation while guaranteeing fairness in the following sense: any party that
aborts after learning the output pays a monetary penalty to all parties that did not learn the output. Andrychowicz et
al. (Bitcoin Workshop 2014) also suggested extending to scenarios where parties receive a payoff according to the
output of a secure function evaluation, and outlined a 2-party protocol for the same that in addition satisfies the notion
of fairness described above.

In this work, we formalize, generalize, and construct multiparty protocols for the primitive suggested by
Andrychowicz et al. We call this primitive secure cash distribution with penalties. Our formulation of secure cash
distribution with penalties poses it as a multistage reactive functionality (i.e., more general than secure function eval-
uation) that provides a way to securely implement smart contracts in a decentralized setting, and consequently suffices
to capture a wide variety of stateful computations involving data and/or money, such as decentralized auctions, mar-
kets, and games such as poker, etc. Our protocol realizing secure cash distribution with penalties works in a hybrid
model where parties have access to a claim-or-refund transaction functionality F?

CR which can be efficiently realized
in (a variant of) Bitcoin, and is otherwise independent of the Bitcoin ecosystem. We emphasize that our protocol is
dropout-tolerant in the sense that any party that drops out during the protocol is forced to pay a monetary penalty to
all other parties. Our formalization and construction generalize both secure computation with penalties of Bentov and
Kumaresan (Crypto 2014), and secure lottery with penalties of Andrychowicz et al. (Security and Privacy 2014).

1 Introduction
Once there were two “mental chess” experts who had become tired of their favorite pastime. Let’s play
“mental poker” for some variety suggested one. “Sure” said the other. “Just let me deal!”

Motivated by this anecdote, Shamir, Rivest, and Adleman set forth in their seminal paper [1] to propose protocols that
allow a pair of parties to play “fair” mental poker. Arguably their paper gave birth to the concept of secure multiparty
computation (MPC), a primitive that allows a set of mutually distrusting parties to carry out a distributed computation
without compromising on the privacy of inputs or the correctness of the end result [2]. Indeed mental poker has since
been used as a metaphor for MPC [3]. Clearly, MPC can be used to allow a set of parties to play poker over the Internet
without having to trust a third party. However this comes with certain caveats.

The obvious problem is that secure computation as defined can only allow players to play mental poker (i.e.,
without involving real money). Another serious problem is that secure computation in the presence of a dishonest
majority (including the important two-party case) does not provide dropout-tolerant solutions to mental poker. Players
may wait until the end of the hand to decide whether they want to drop out, i.e., after they have a much better idea of
whether they are going to win or lose. As [4] points out, an even more fundamental issue is to get parties to respect
the outcome of the protocol and distribute the money as dictated by the output.
Tying payments to secure computation. More generally, there are many cases in which we would like to tie real-
world payments to secure computation, e.g., decentralized fair exchange of digital goods or services for money in
online marketplaces, decentralized multistage auctions, decentralized online gambling, etc. Currently, these tasks
are delegated to a trusted third party (such as a bank, escrow service, or a court system). For “traditional” currency
systems, any payment—whether or not it is based on secure computation— requires trust in a third party (as the

1

currency itself is based on a trusted party, such as a central bank). However, the introduction of cryptocurrencies, such
as Bitcoin [5], opens the possibility of handling payments in a decentralized manner [6, 7].

Indeed cryptocurrencies are a natural choice for combining MPC with “real money.” Andrychowicz et al. [4]
and Back and Bentov [8] introduced techniques to perform secure multiparty computations on Bitcoin. Among other
things, these works constructed lottery protocols that ensure that any party that aborts after learning the outcome pays
a monetary penalty to all other parties. Following this, Andrychowicz et al. [9] and concurrently Bentov and Ku-
maresan [10] extended the solution to arbitrary secure function evaluation while guaranteeing fairness in the following
sense: any party that aborts after learning the output pays a monetary penalty to all parties that did not learn the output.
Andrychowicz et al. [9] also suggested extending to scenarios where parties receive a payoff according to the output
of a secure function evaluation, and outlined a 2-party protocol for the same that in addition satisfies the notion of
fairness described above.
Our contributions in a nutshell. In this work, we formalize, generalize, and construct multiparty protocols for
the primitive suggested by [9]. We call this primitive secure cash distribution with penalties. Our formulation of
secure cash distribution with penalties poses it as a multistage reactive functionality (i.e., more general than secure
function evaluation) that suffices to capture a wide variety of stateful computations involving data and/or money, such
as decentralized auctions, games, markets, etc. Our protocol realizing secure cash distribution with penalties works in
a hybrid model where parties have access to a claim-or-refund transaction functionality F?CR which can be efficiently
realized in (a variant of) Bitcoin, and is otherwise independent of the Bitcoin ecosystem. We emphasize that our
protocol is dropout-tolerant in the sense that any party that drops out during the protocol is forced to pay a monetary
penalty to all other parties. Our formalization and construction simultaneously generalize secure computation with
penalties of Bentov and Kumaresan [10], and secure lottery with penalties of Andrychowicz et al. [4]. Below we
describe our contributions in more detail.
Defining SCD. We define SCD as a bounded reactive functionality, i.e., the computation proceeds in a finite number
of stages. In an initial “deposit” stage, parties deposit sums of money. In each succeeding stage, parties provide inputs
and obtain outputs for that stage. Then in the last stage, the money deposited by the parties is redistributed among
them according to the output of the last stage. Any party that aborts during any stage of the computation will be forced
to pay penalties to all parties. Thus SCD guarantees that honest parties either complete the entire computation or are
compensated financially.
Implementing SCD. Note that while in the standard setting, reactive secure computation reduces to non-reactive
secure computation by secret sharing the state between successive stages, a similar reduction does not carry over when
we are in the penalty setting since a malicious party may abort between successive stages of a reactive computation
and go unpenalized. We design a protocol that realizes SCD (i.e., with full simulation security [11]) in a hybrid model
where parties have access to a claim-or-refund transaction functionality F?CR. The main technical idea in our solution
is the construction of a see-saw transaction mechanism which is a novel extension of the ladder transaction mechanism
of [10]. Loosely speaking, the ladder mechanism implements fair exchange with penalties in the following sense: each
party has their (digital) item at the beginning of the protocol, and at the end if one party receives all items, then it pays
a penalty to parties which have not received all items. In contrast the see-saw mechanism implements the following
variant of fair exchange with penalties: the exchange proceeds in multiple rounds, and in each round, parties can
adaptively choose their input item they want exchanged based on the items put up for exchange by other parties in
previous rounds. Penalties are now enforced across the entire exchange process. That is, if a party decides to terminate
the exchange process, then it pays a penalty to all other parties. Note in particular that penalties are enforced even
when no party receives all items. Contrast this with the ladder mechanism that enforces penalties to all parties only
when some party received all items. See Section 5 for the implementation of the see-saw mechanism. Our protocol
for secure cash distribution makes non-black-box use of an underlying MPC protocol (cf. Section 4).
Practical applications. Consider a group of servers that agree to carry out an intensive computation task that spans
several days. Furthermore, assume that the computation requires multiple rounds of interactions and the full partic-
ipation of all participating servers, and otherwise fails. Here, we would like to guarantee that the servers exchange
information as agreed upon without defaulting. In such a setting, it is critical to ensure that the computation is carried
out as intended, and that no server invests computational effort only to learn that a different server abruptly decided to
not continue the computation any more. Observe that the problem description as is does not involve money. Still our
formulation of SCD allows us to capture such a setting and offers a meaningful solution to this problem, namely that a
defaulting server will be forced to pay a penalty to everyone else. Such a solution can be achieved by a straightforward
use of a verifiable computation scheme in combination with our see-saw transaction mechanism.

2

Next, consider a group of agents who participate in a set of financial transactions over the internet. For example,
these could be agents in a prediction market (possibly with dark pool trading capabilities) who place bets on the
occurrence of sets of events, and may adaptively vary their choices depending on whether a previous event in the
set happened or not. One must also consider what happens when a malicious agent stops participating during the
process. A naı̈ve solution would require that the agents make a deposit at the beginning of the protocol which they
would forfeit when they abort. To make this idea work in a decentralized setting, one must develop a method to put
the deposits in escrow, and make sure that in the event of an abort (1) honest agents can always retrieve their deposits
from the escrow, and (2) honest agents obtain penalties from the escrow when a dishonest agent aborts. Implementing
such a decentralized escrow when a majority of agents are dishonest is not straightforward. Our formulation of SCD
exactly allows the capability to maintain a decentralized escrow across multiple stages of a computation and hence our
protocol implementing SCD provides a solution to the prediction market problem described above.

More generally, since SCD models stateful reactive functionalities it provides a way to securely implement smart
contracts in a decentralized setting, and consequently captures a wide variety of games, including poker (assuming that
the strategy space of the players includes variables that cannot be clearly defined and may depend on side information
that cannot be completely captured).
Limitations. Note that the plain model realizations of F?CR rely on Bitcoin scripts. While we explicitly specify the
checks that the scripts need to perform, the current Bitcoin scripting language is quite conservative (many opcodes
became blacklisted [12]), and therefore some of the required checks are not currently supported in Bitcoin. More
concretely, our construction requires signature verification of arbitrary messages (i.e., not more burdensome than the
supported signature verification for the entire transaction data). In addition it requires scripts to support calculations
whose complexity depends on the specific application. For instance, in the application to poker, we require Bitcoin
scripts to support simple arithmetic calculations that verify whether a transcript of a poker protocol follows the rules
of poker. In the most general setting, the validation complexity [13] (which corresponds to the complexity of script
verification) equals the complexity of verifying validity of partial transcripts of an underlying secure computation
protocol that realizes the reactive functionality. As suggested in [13], validation complexity may also accurately
reflect additional transaction fees that may be levied to include “unordinary” transactions (i.e., transactions of the kind
that our constructions need) into the blockchain. Currently, only a small fraction of miners (e.g., Eligius mining pool)
accept transactions that make use of the entire Bitcoin scripting language. In any case, our constructions require that
new opcodes be added to the Bitcoin scripting language (e.g., the opcode mentioned above for verifying signatures
of arbitrary messages). While we expect Bitcoin to be less conservative in the scripts it supports in the future, our
protocols can be deployed on alt-coins with Turing complete scripts. However, Turing complete scripts are an overkill
for our constructions. This is because the number of rounds until the final cash distribution must be bounded (cf.
Section 4), hence miners can levy a suitable transaction fee by easily assessing the verification complexity of a certain
SCD (e.g., poker of some fixed number of rounds) script. By contrast, a full-fledged Turing-complete cryptocurrency
(like the Ethereum project) has to resort to extra mechanisms in order to protect itself from DoS attacks [14].

Our main goal in this work is to show feasibility of realizing SCD. As mentioned earlier, our SCD protocol makes
non-black-box use of an underlying MPC protocol and can be inefficient in practice. We note that this limitation can
be removed for some applications. For example, in Section 6, we show how to obtain a protocol for decentralized
poker with dropout tolerance that makes only black-box use of MPC.
Related work. The general problem of secure computation was solved in the 2-party setting by Yao [15], and in the
multiparty setting in [3]. Besides not handling payments, none of the schemes above can guarantee fairness in the
presence of a dishonest majority [16]. [4] designed a multiparty lottery protocol in the penalty model. [9] designed
a secure computation protocol in the penalty model but their protocol handles only the two-party setting. Secure
multiparty computation with penalties and secure multiparty lottery with penalties were formalized, and protocols
realizing these were constructed in [10]. [13] shows applications of Bitcoin to various other interesting cryptographic
primitives. The work of [17] also shows how to enforce smart contracts with financial privacy but with different trust
assumptions.
Relation to [9]. The extension to a setting where payoffs depend on the output of a secure function evaluation was
proposed in [9, Section 6]. The authors then show how to modify the Bitcoin scripts that implements two-party
secure function evaluation with penalties and obtain a solution for the extended setting with payoffs. We emphasize
that [9] handles the two-party case, with a non-reactive functionality, and outlines a solution using ad-hoc Bitcoin
transactions. In contrast, we provide formal definitions for secure cash distribution with penalties which we define as
a stateful reactive functionality, then construct a multiparty protocol that securely realize this definition, and provide

3

formal proofs. Furthermore, our protocol works in a clean hybrid model where parties have access to a claim-or-
refund transaction functionality F?CR and is otherwise independent of the Bitcoin ecosystem. That is, our protocol
can be easily adapted to any setting (e.g., alt-coins, PayPal) that can support an implementation of F?CR. In a sense,
our work shows that F?CR is a complete primitive for secure computations involving money. Finally, a technique that
we use in our cash distribution mechanism was previously outlined in [9]. Specifically, we use the idea from [9] that
allows the parties to transfer arbitrary amounts of money by dividing a large amount into “power of 2 fractions.” Note
that it is possible to replace this technique with a naı̈ve mechanism and still obtain our feasibility results.

2 Preliminaries
A function µ(·) is negligible in λ if for every positive polynomial p(·) and all sufficiently large λ’s it holds that
µ(λ) < 1/p(λ). A probability ensemble X = {X(a, λ)}a∈{0,1}∗,n∈N is an infinite sequence of random variables
indexed by a and λ ∈ N. Two distribution ensembles X = {X(a, λ)}λ∈N and Y = {Y (a, λ)}λ∈N are said to be
computationally indistinguishable, denoted X

c≡ Y if for every non-uniform polynomial-time algorithm D there
exists a negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ).

All parties are assumed to run in time polynomial in the security parameter λ. We prove security in the “secure
computation with coins” (SCC) model proposed in [10]. Note that the main difference from standard definitions of
secure computation [18] is that now the view of Z contains the distribution of coins. Let IDEALf,S,Z(λ, z) denote
the output of environment Z initialized with input z after interacting in the ideal process with ideal process adversary
S and (standard or special) ideal functionality Gf on security parameter λ. Recall that our protocols will be run in a
hybrid model where parties will have access to a (standard or special) ideal functionality Gg . We denote the output of
Z after interacting in an execution of π in such a model with A by HYBRIDgπ,A,Z(λ, z), where z denotes Z’s input.
We are now ready to define what it means for a protocol to SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-time n-party protocol and let Gf be a probabilis-
tic polynomial-time n-party (standard or special) ideal functionality. We say that π SCC realizes Gf with abort in
the Gg-hybrid model (where Gg is a standard or a special ideal functionality) if for every non-uniform probabilistic
polynomial-time adversary A attacking π there exists a non-uniform probabilistic polynomial-time adversary S for
the ideal model such that for every non-uniform probabilistic polynomial-time adversary Z ,

{IDEALf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡

{HYBRIDgπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ . ♦

Ideal functionality F?CR [10, 19, 20]. This special ideal functionality has been employed in the design of multiparty
fair secure computation and lottery protocols [10]. See Figure 1 for a formal description. At a high level, F?CR allows a
sender Ps to conditionally send coins(x) to a receiver Pr. The condition is formalized as the revelation of a satisfying
assignment (i.e., witness) for a sender-specified circuit φs,r(· ; z) (i.e., relation) that may depend on some public input
z. Further, there is a “time” bound, formalized as a round number τ , within which Pr has to act in order to claim
the coins. An important property that we wish to stress is that the satisfying witness is made public by F?CR. In the
Bitcoin realization of F?CR, sending a message with coins(x) corresponds to broadcasting a transaction to the Bitcoin
network, and waiting according to some time parameter until there is enough confidence that the transaction will not
be reversed.

4

F?CR with session identifier sid, running with parties Ps and Pr, a parameter 1λ, and adversary S proceeds as
follows:

• Deposit phase. Upon receiving the tuple (deposit, sid, ssid, s, r, φs,r, τ, coins(x)) from Ps, record the message
(deposit, sid, ssid, s, r, φs,r, τ, x) and send it to all parties. Ignore any future deposit messages with the same
ssid from Ps to Pr.

• Claim phase. In round τ , upon receiving (claim, sid, ssid, s, r, φs,r, τ, x, w) from Pr, check if (1) a tuple
(deposit, sid, ssid, s, r, φs,r, τ, x) was recorded, and (2) if φs,r(w) = 1. If both checks pass, send (claim, sid,
ssid, s, r, φs,r, τ, x, w) to all parties, send (claim, sid, ssid, s, r, φs,r, τ, coins(x)) to Pr, and delete the record
(deposit, sid, ssid, s, r, φs,r, τ, x).

• Refund phase: In round τ + 1, if the record (deposit, sid, ssid, s, r, φs,r, τ, x) was not deleted, then send
(refund, sid, ssid, s, r, φs,r, τ, coins(x)) to Ps, and delete the record (deposit, sid, ssid, s, r, φs,r, τ, x).

Figure 1: The ideal functionality F?CR.

3 Secure Cash Distribution
In this section, we introduce secure cash distribution with penalties. Loosely speaking, secure cash distribution with
penalties (or simply “secure cash distribution”) allows each party to first make a cash deposit and then supply additional
inputs to a function. The deposited cash is then distributed back to the parties depending on (and along with) the output
of the function evaluation. Any malicious party that aborts the protocol after learning output and/or receiving coins
must pay a monetary penalty to all honest parties.

Clearly, such a primitive generalizes both secure computation with penalties [10, 9] and secure lottery with penal-
ties [10, 4]. As it turns out, this informal definition of secure cash distribution is not strong enough to enable appli-
cations that we are interested in. What is needed is to handle the reactive setting, i.e., allowing multiple “stages” of
computation with parties providing inputs to each stage and receiving outputs at the end of each stage. Let F be a
reactive functionality, i.e., one that keeps state across evaluations and proceeds in multiple stages. To keeps things
simple, we assume an upper bound ρ on the number of stages of F . That is, we assume F = (f1, . . . , fρ) is a col-
lection of functionalities which accumulate state with each evaluation. More concretely, let x` = (x`,1, . . . , x`,n)
denote the parties’ input to the `-th stage for ` ∈ [ρ], and let state0 be initialized as state0 := NULL. Then over the
course of the computation, parties successively evaluate f`(x`; state`−1) to obtain (z`, state`) for ` = 1, . . . , ρ. Here
z` = (z`,1, . . . , z`,n) represents the parties’ output, i.e., party Pi obtains z`,i. The value state` represents the state
saved for the (`+ 1)-th computation stage, and is kept private from the parties (via use of secret sharing).

Although we now handle a reactive functionality, we stress that the cash that is deposited at the beginning of the
protocol is distributed only at the end (i.e., no cash distribution occurs in any intermediate stage). That is, secure
cash distribution provides a means to keep the cash deposited in escrow while parties’ learn output from each stage’s
function evaluation, and thus can revise their inputs to a later stage. The capability to maintain an escrow turns out to
be crucial in enabling the applications we are interested in.

We now proceed to the formal details. Let d? = (d?1, . . . , d
?
n) be the initial cash deposit from the parties, i.e.,

party Pi deposits coins(d?i) into the computation. Then at the end of the protocol all the deposited coins, i.e.,
coins(

∑
i∈[n] d

?
i), are distributed back to the parties according to the evaluation of the reactive functionality F on

the parties’ inputs. More precisely, let zρ denote the parties’ output at the end of the last stage of the computation. We
assume that zρ specifies how the coins are (re)distributed at the end of the entire computation. That is, we can parse
zρ = (z = (z1, . . . , zn), z

? = (z?1 , . . . , z
?
n)) where zi represents the parties’ output, and z?i represents the amount of

cash that Pi is supposed to get back. We are now ready to define bounded zero-sum reactive distribution.

Definition 2 (Bounded zero-sum reactive distribution). For all ` ∈ [ρ], let fi : ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n
× {0, 1}∗ be a function. Let d? = (d?1, . . . , d

?
n) ∈ Nn be a vector. We say that (F = (f1, . . . , fρ), d

?) is a bounded
zero-sum reactive distribution if ∀ x1, . . . , xρ ∈ ({0, 1}∗)n it holds that the value zρ = ((z1, . . . , zn), (z

?
1 , . . . , z

?
n)) ∈

({0, 1}∗)n × Nn obtained from the sequence:

5

(z1, state1)← f1(x1;NULL);

(z2, state2)← f2(x2; state1);

...
(zρ, stateρ)← fρ(xρ; stateρ−1),

satisfies
∑
i z
?
i =

∑
i d
?
i . ♦

Observation 1. The coins earned by Pi, namely z?i may be such that z?i > d?i (e.g., when F represents the lottery
functionality [4, 10]). To simplify exposition, we make use of a “helper” function g which on input (d?, z?) returns a
matrix A whose (i, j)-th entry denoted ai,j specifies the amount of coins that need to be transferred from Pi to Pj . In
particular, it must hold for all i ∈ [n] that

∑
j∈[n] ai,j = d?i , and for all j ∈ [n] that

∑
i∈[n] ai,j = z?j . Observe that it

is easy to design g for a zero-sum distribution (F, d?).

Next we formally define F?F,d? which idealizes SCD.

Let (F = (f1, . . . , fn), d
? = (d?1, . . . , d

?
n)) be a bounded zero-sum reactive distribution (cf. Definition 2). F?F,d?

with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ, and an ideal adversary S that corrupts
parties {Ps}s∈C proceeds as follows: Let H = [n] \ C and h = |H|. Let d represent the safety deposit, and let q
denote the penalty amount. Initialize state0 := NULL and flag = 1.

• Deposit phase: Wait to receive a message (deposit, sid, ssid, r, d?, coins(d+ d?r)) from Pr for all r ∈ H . Then
wait to receive (deposit, sid, ssid, d?, coins(hq +

∑
s∈C d

?
s)) from S.

• Computation phase: For each ` = 1, . . . , ρ, do:

– Wait to receive a message (input, sid, ssid, r, x`,r) from Pr for all r ∈ H .

– If S sends (abort, sid, ssid, {coins(qr)}r∈H), send (penalty, sid, ssid, coins(q + qr)) to Pr for all r ∈ H ,
send (payback, sid, ssid, coins(

∑
s∈C d

?
s −

∑
r∈H qr)) to S, set flag = 0, and terminate phase.

– Else if S sends (input, sid, ssid, {x`,s}s∈C), set x` = (x`,1, . . . , x`,n).

– Compute (z`, state`)← f`(x`; state`−1), and parse z` to obtain (z`,1, . . . , z`,n).

– Send (output, sid, ssid, {zs,`}s∈C) to S.

– If S returns (continue, sid, ssid), then send (output, sid, ssid, z`,r) to Pr for all r ∈ H .

– Else if S sends (abort, sid, ssid, {coins(qr)}r∈H), send (penalty, sid, ssid, coins(q+qr)) to Pr for all r ∈ H ,
send (payback, sid, ssid, coins(

∑
s∈C d

?
s −

∑
r∈H qr)) to S, set flag = 0, and terminate phase.

• Distribution phase: If flag = 0, send (return, sid, ssid, coins(d+ d?r)) to Pr for all r ∈ H , and terminate. Else,
parse zρ to obtain z? = (z?1 , . . . , z

?
n), and send (pay, sid, ssid, z?, coins(d+ z?r)) to Pr for all r ∈ H , and send

(pay, sid, ssid, z?, coins(hq +
∑
s∈C z

?
s)) to S.

Figure 2: Secure cash distribution with penalties F?F,d? .

Ideal functionality F?F,d? . See Figure 2 for the formal defnition. In an initial cash deposit phase, the functionality
F?F,d? receives coins(d + d?r) from each honest Pr, where d represents a parameterizable safety deposit and d?r rep-
resents the cash that will be stored in escrow. In addition, F?F,d? allows the ideal world adversary S to deposit some
coins which may be used to compensate honest parties if S aborts after receiving the outputs. If there is an abort at
this stage, that is, S does not submit the necessary amount of cash then the protocol terminates, and the honest parties
get their deposit back. Note that at this stage there is no penalty for aborts; the penalties enter the picture only after
this stage. Once the deposit phase ends, parties enter the computation phase. In the `-th stage of the computation
phase, the honest parties supply their inputs to `-th stage of the computation. The functionality then waits to receive
corrupt parties’ inputs for this stage. If S aborts at this stage, then the honest parties receive coins(q) penalty in ad-
dition to getting their deposit coins(d) back (and may also obtain some extra coins(qr)), and the computation phase

6

is terminated. Now honest parties receive the amount that they deposited at the beginning of the protocol in the cash
distribution phase. However, if S does continue (i.e., provide inputs to this stage), then the functionality computes
the output of the `-th stage. Now the simulator gets a chance to look at the output first, and then decide if it wants to
continue or not. If it decides to continue then the honest parties receive the output as well, and proceed to the next
stage of the computation. On the other hand, if S decides to abort, then the honest parties get compensated as before,
i.e., with coins(d + d?r + q + qr) in total, and the protocol is terminated. The computation phase terminates after the
ρ-th stage ends. Note that upon successful completion of the ρ-th stage, all parties receive their final outputs. After
this, parties enter the cash distribution phase; the cash is distributed according to the output of the ρ-th stage, i.e.,
zρ. The functionality parses zρ to obtain z? which dictates how the cash is distributed among the parties. Using z?,
the functionality distributes the cash among the parties, and returns their original deposits as well. In addition, the
functionality also sends the value z? to all parties, i.e., the way the cash gets distributed at the end is not private.
How to use F?F,d? to implement poker. We now describe a naı̈ve implementation of how to play poker hand via
F?F,d? . (In Section 6 we provide an optimized poker protocol.) We assume that there is a bound on the maximum
number of betting stages within a single hand. Players start the protocol by depositing their “chips” or equivalently
cash to F?F,d? . This ends the deposit phase. Now players supply inputs to the first stage function whose purpose is to
deal players’ hole cards. They do this by each picking uniform random string and sending it to F?F,d? . That is player
Pi picks and sends r̃i to F?F,d? . Then F?F,d? computes f1(r̃1, . . . , r̃n) in the following way: first compute r̃ =

⊕n
i=1r̃i

(note: no coalition of malicious players can influence r̃i in any way), then interpret uniform random string r̃ in a
natural way to generate players’ hole cards as well as the community cards. This value r̃ is then saved to the private
state. Now note that any player that aborts without supplying r̃i pays a penalty to every honest player. Otherwise,
players get their hole cards (the community cards still remain hidden), and can start to place bets. Again note that any
player that aborts after seeing its hole cards pays a penalty to every honest player. Each move by a single player is
considered as a computation stage. In the stage corresponding to player Pi’s turn, Pi simply submits its next move
(e.g., “match,” “fold,” “raise by $1”) as the input to the stage. (Other players have no inputs to this stage.) Then the
stage computation is simply to append player Pi’s move to the saved transcript of bets made so far (i.e., the state of
the previous stage), and then send Pi’s move to all players. It is possible that a player Pi submits an illegal move (i.e.,
inconsistent with the transcript, or simply overbets) in which case the last stage computation will reconstruct an illegal
transcript, and ensure that the cash distribution phase compensates every honest party with coins(q). Note that players
never submit any additional coins (other than at the beginning, i.e., the deposit phase). In the stage corresponding to
revealing community cards (say after the last player has placed its bet), the stage function simply uses r̃ to regenerate
the community cards that need to be revealed, and additionally broadcasts the last player’s move. Again a player that
aborts after seeing the community cards pays a penalty to every honest player. Players keep continuing to make their
moves during their turn until it’s time for the last move to be made. Once this move is made, F?F,d? first determines
the pot (using the bets made in the game that can be found in the saved state containing the transcript), and then send
the pot earnings to the winner(s), and the remaining cash (from that deposited initially) back to the players. To play
the next hand, players execute the above all over again.

It is instructive to note why just secure computation with penalties does not seem powerful enough to implement
poker. Note that secure computation with penalties can indeed implement each stage of the computation. At first
glance chaining them together seems to solve the problem. However, this is an incorrect approach since there is no
way to force players’ to continue to the next stage (in particular to supply inputs to the next stage). Indeed, the only
guarantees that we get from such an approach is that malicious players who learn the output of a stage of computation
cannot prevent honest parties from learning the same (except by paying a penalty). This is not enough to satisfy the
notion of dropout tolerance that we desire since a player may dropout in the middle of a hand without getting penalized.

4 Realizing SCD
In this section we provide the blueprint of our protocol that realizes secure cash distribution with penalties. As we will
see soon, our general strategy is to use a protocol that securely realizes a standard reactive functionality (with no coins,
and unfair abort), denoted FF , to set things up such that the see-saw transaction mechanism of Section 5 applies to
ensure that either the protocol is completed until the very end or all honest parties get compensated. Then, to make the
final transfers between parties we will make use of a cash distribution mechanism that we describe later in this section.

To simplify the presentation of our protocol, we consider the case when there is only a single stage in the com-

7

putation, i.e., ρ = 1 and F = f . Essentially we are dealing with secure function evaluation but with an important
difference: namely, aborts anywhere during the computation (i.e., not only at the output delivery step) will be penal-
ized. The extension to multiple stages is straightforward and we describe it later.

First let us set up some notation. We say (r, i) > (r′, i′) iff either (1) r > r′, or (2) r = r′ and i > i′. For (r, i),
let pred(r, i) be (r′, i′) such that for every (r′′, i′′) it holds that (r′′, i′′) < (r, i) iff (r′′, i′′) ≤ (r′, i′). In other words,
pred(r, i) is the “predecessor” of (r, i). Let πf be a m-round protocol that realizes function f . For each i ∈ [n], let
xi denote party Pi’s input to f . We assume that in each round of the protocol, parties take turns to broadcast their
message, i.e., the entire protocol transcript is public.1 Let TT

πf

r,i denote the transcript of protocol πf up until party
Pi’s message in the r-th round. Let nmfr,i denote the next message function for party Pi in round r. The function
nmfr,i takes as input the actual input xi, the private randomness of party Pi, denoted ωi, and the public transcript
seen so far, i.e., TT

πf

pred(r,i). In other words, we have that TT
πf

r,i ← nmfr,i(TT
πf

pred(r,i); (xi, ωi)) (i.e., nmfr,i outputs the
entire transcript so far). Also, since all messages are public broadcasts, there exists a function tv

πf

r,i which checks if
a given transcript TTr,i (that contains all messages until and including party Pi’s message in round r) is valid or not.
By definition, we have that tv

πf

r,i(TT
πf

r,i) = 1. For simplicity and wlog, we assume that all messages (i.e., transcripts)
broadcasted are signed by the sending party. This implies that the function tv that checks validity of the transcript also
checks for the necessary signatures.
Our strategy is to force each party Pi to deliver its round r message during its turn. That is, first, we want party P1

to either reveal its first round message TT
πf

1,1 to all parties, or pay a penalty to all parties. If P1 revealed TT
πf

1,1, then P2

can apply nmf1,2(TT
πf

1,1; (x2, ω2)) to obtain TT
πf

1,2. Now we want P2 to either reveal TT
πf

1,2 to all parties or otherwise
pay a penalty to all parties. This way, we want to force every party to either make its move or pay a penalty. If we
implement this strategy successfully, then we have ensured that each party either learned its output, or is compensated
with a penalty. (Note that cash distribution at the end still needs to be handled.) Designing a transaction mechanism
for implementing the above strategy is one of the main contributions in this paper. We defer the presentation of the
transaction mechanism to Section 5, and devote the rest of this section to handling other issues.
Handling multiple valid transcripts. In an actual implementation of the above strategy in the F?CR-hybrid model,
we will have parties receive multiple F?CR transactions from other parties that can be claimed if they produce a valid
transcript. It is possible that a malicious party may claim a subset of these F?CR transactions using one valid transcript
and a different subset using a different valid transcript. Such an “attack” may indeed be possible by varying the actual
input and private randomness input to the next message function. Indeed malicious coalitions of k consecutive parties
can potentially change the last k messages in the transcript (since they possess the required signing keys to do this). In
applications to poker, a player (admittedly a novice) may leak an “expression of surprise” upon seeing a (malicious)
player’s “confirmed” move, only to see this move modified by the next (malicious) player. In any case, we consider
such attacks as violations, and must compensate the honest parties upon such violations. Note that a “proof” of any
such violation is readily obtained from the inconsistent transcripts. We ask each party Pi to make F?CR transactions to
every other party that can be claimed by revealing a proof of violation: i.e., pair of transcripts T vio

i = (TTi, TT′i) such
that for some r ∈ [m], it holds that tv

πf

r,i(TTi) = tv
πf

r,i(TT′i) and yet TTi 6= TT′i. Since transcripts are signed, a proof
of violation against an honest party can never be obtained (except with negligible probability). Following the notation
in [10], we use P1

T−−→
q,τ

P2 to denote an F?CR transaction for coins(q) made by P1 that can be claimed by P2 if P2

produces witness T within time τ . Thus to safeguard against violations we ask each Pi to make the following set of
transactions for each j ∈ [n] \ {i}:

Pi
T vio
i−−−−−−−−−−−−−−→

n·q,τ
Pj (Txvio

i,j)

Here τ is such that the transaction can be claimed until the end of the protocol. Note that the transaction if claimed
will transfer coins(n · q) from the violating party Pi. This is because, upon such a violation an honest Pj will be asked
to abort the rest of the protocol and directly claim Txvio

i,j where Pi is the violating party. Since Pj aborts the rest of
the protocol, it may be forced to pay a total compensation of coins((n − 1)q) to the remaining parties. Thus upon
any violation by malicious parties, we ensure that each honest Pj will still be coins(q) up at the end of the protocol
execution.

1That is, all messages exchanged in the protocol are simply broadcasts. Protocols secure against dishonest majority typically fall under this
category. For an explicity example, see the main construction in [21, 3]. See also the discussion in [22].

8

Handling multiple stages of computation. At an abstract level, adding stages to a reactive computation merely
amounts to adding more “next messages” to the transcript. Indeed an intermediate stage of computation simply begins
by reconstructing the current state, and then performing the computation on this state and the current inputs. Thus
it is trivial to merge multiple stages of computation into a single stage—simply append the protocol messages of the
multiple stages together. Since our strategy works by keeping track of the protocol transcript, it ensures that an abort
at any round/stage of a multi-stage computation will be penalized.
Handling the cash distribution. To do this, we first need parties to make deposits at the beginning of the protocol that
will allow them to claim their returns at the end of the protocol. Note that parties might have to transfer an arbitrary
amount of coins between themselves. Adopting an idea from [9], we ask parties to commit to money transfers for
all powers of 2 up to the maximum possible sum. In more detail, let d? = (d?1, . . . , d

?
n), and for each i ∈ [n], let

mi = dlog(d?i)e. The high level idea is to have, for every ordered pair (i, j) with i, j ∈ [n] and i 6= j, and for each
k ∈ [mi], party Pi make an F?CR transaction as follows:

Pi
T fin
i,j,k−−−−−−−−−−−−−−−−−−→

2k,τfin

Pj (Txfin
i,j,k)

Given these transactions, it is easy to see that Pj can claim any arbitrary amount of coins from the rest of the
parties. Also, we need to ensure that Pj obtains exactly the correct amount of coins. That is, suppose the output of
the reactive computation is zρ = (z, z?) with z? = (z?1 , . . . , z

?
n), then we want Pj to obtain coins(z?j) at the end of

the protocol. In other words, we need to provide Pj with the right subset of {T fin
i,j,k}i,k that will allow it to claim

exactly coins(z?j). This subset will obviously need to be transferred in the last computation stage fρ. To make sure
the deposits are made at the very beginning, the parties need to know the corresponding verification circuits φfin

i,j,k

at the beginning as well. To design the verification circuits, we employ honest binding commitments [22, 10] (See
also Appendix A). Let (S,R) be a honest binding commitment scheme. (Note that such commitment schemes can
be realized by cryptographic hash functions in the programmable random oracle model.) More precisely we require
parties to execute a standard, secure-with-abort MPC protocol at the very beginning that for all i ∈ [n], j ∈ [n] \ {i},
k ∈ [mi]:

• chooses T fin
i,j,k ← {0, 1}λ and ωfin

i,j,k ← {0, 1}λ at random;

• computes comfin
i,j,k ← S(1λ, T fin

i,j,k, ω
fin
i,j,k);

• n-out-of-n secret shares each (T fin
i,j,k, ω

fin
i,j,k);

• outputs comfin
i,j,k and `-th share of (T fin

i,j,k, ω
fin
i,j,k) to P`.

The secret sharing is done so that parties can reconstruct the T fin
i,j,k values (saved as part of the state) at the beginning

of the last stage of the computation. Note that now parties possess the verification circuits φfin
i,j,k to make the transaction

Txfin
i,j,k. Next we describe the modification to the last stage. Instead of realizing fρ in the last stage, parties realize f ′ρ

which:

• computes z? = (z?1 , . . . , z
?
n) by invoking fρ;

• computes A = g(d?, z?) (cf. Observation 1), let ai,j denote the (i, j)-th entry of matrix A, and let b?i,j,1, ..., b
?
i,j,mi

be the binary representation of ai,j ;

• for all i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

reconstructs T fin
i,j,k (from stateρ−1);

outputs T fin
i,j,k if b?i,j,k = 1, else outputs 0.

Given the above it is easy to see that the set of transactions {Txfin
i,j,k} transfer the right amounts of money according

to the output z?. Next we show how to design the see-saw transaction mechanism that implements our strategy of
forcing parties to send the next message of the protocol realizing FF .

9

5 See-saw Mechanism
Recall that our goal is to force parties to reveal their next message of say a m-round protocol for computing function
f , one-by-one in a round-robin fashion round after round. That is, party P1 first computes and reveals “token” T1,1 =
TT
πf

1,1, then party P2 computes (using T1,1) and reveals token T1,2 = TT
πf

1,2, and so on until party Pn computes and
reveals token T1,n = TT

πf

1,n. (Note that the order of revelations is important.) Following this, parties move on to the
next round, and so on and so forth until at the end Pn reveals token Tm,n = TT

πf
m,n. What we need is a transaction

mechanism that incentivizes parties to follow the above sequence of reveals. More precisely for every i ∈ [n], r ∈ [m],
we force Pi to pay a penalty to all other parties if (a) all parties P1, . . . , Pn revealed their tokens until round r − 1;
and (b) in round r parties P1, . . . , Pi−1, revealed their tokens; and (c) in round r party Pi did not reveal Tr,i.

Towards solving this problem, we let parties participate in a initial deposit phase where parties make some se-
quence of transactions. We are lenient towards any aborts during this initial deposit phase, i.e., we do not penalize
any party for an abort during this deposit phase. However once this deposit phase ends, then we enter the reveal
phase. Any party that deviates during its turn in any of the m rounds in the reveal phase has to pay a penalty to all the
remaining parties. Contrast this with the “ladder mechanism” of [10], where a party that aborts without learning the
final output may not necessarily pay penalties to all parties.
Honest parties’ strategy. As mentioned earlier, our protocol will be an ordered sequence of claim-or-refund transac-
tions. In an honest execution of our protocol, all deposits will be made first before any of them is claimed. Also, the
sequence deposits will be claimed in the reverse order in which they are made. Note that a malicious party may abort
the protocol either (1) by not making a deposit it was supposed to make, or (2) by not claiming a deposit it could have
claimed. The following two rules of thumb may be kept in mind to understand how honest parties behave in the event
of such aborts.

1. When it’s an honest party’s turn to make a deposit, it makes the deposit if and only if all the deposits that were
supposed to made before its deposit were made. That is, if a malicious party does not make a deposit during its turn,
then no honest party makes any subsequent deposit in the protocol.

2. When it’s an honest party’s turn to make a claim, it makes the claim if it possesses all the witnesses necessary for
making the claim. That is, an honest party may go ahead and claim a deposit even if (1) some deposits were not
made, and (2) some claims were not made.

Two simplifying assumptions. The first is that our constructions will try to penalize deviations of party Pi in round r
only when (r, i) 6= (1, 1). Later in this section, we show how to handle the “bootstrapping” step of forcing P1 to start
the protocol. The second is that we assume parties can use only unique witnesses to claim F?CR transactions. In our
constructions, the witnesses correspond to protocol transcripts, and we already discussed in the previous section how
to handle the case when parties broadcast multiple valid transcripts.

We construct our final protocol in a step-by-step manner. We start with n = 2 and m = 1.
Single-round two-party case. Since we are in the single-round case we use Ti to denote the token T1,i. Consider the
following sequence of deposit transactions where τ2 > τ1:

P1
T1∧T2−−−−−−−−−−−→
q,τ2

P2 (Tx2)

P2
T1−−−−−−−−−→
q,τ1

P1 (Tx1)

Note that the verification circuits for these transactions are simply the corresponding transcript checking functions
tv
πf

r,i , and are already known to the parties, and thus the deposits can be made. Once all the deposits are made, the
deposits are claimed in reverse. That is, P1 first claims Tx1. Using T1 revealed by P1, party P2 is able to claim Tx2.
We first consider aborts during the initial deposit phase. If P1 aborts without making Tx2, then clearly no money
changes hands and we are good. Now if P2 aborts without making Tx1, then note that P1 does not enter the reveal
phase, and so does not reveal T1. This in turn ensures that P2 will not be able to claim Tx2, and thus no money changes
hands, and we are good. These attacks imply that we do not even get past the initial deposit phase (meaning that we
are not required to penalize any party).

Next, we consider aborts during the reveal phase. Recall that once we enter the reveal phase, then we must penalize
P2 if P1 revealed T1 but P2 did not reveal T2. First suppose P1 aborts, i.e., does not claim Tx1. Then note that Tx1

10

ROOF DEPOSIT.

P1
TTm,2−−−−−−−−−−−→
q,τm,2

P2 (Txm,2)

SEE-SAW DEPOSITS. For r = m− 1 to 1:

P2
TTr+1,1−−−−−−−−−−−−→
2q,τr+1,1

P1 (Txr+1,1)

P1
TTr,2−−−−−−−−−−→
2q,τr,2

P2 (Txr,2)

FLOOR DEPOSIT.

P2
TT1,1−−−−−−−−−−→
q,τ1,1

P1 (Tx1,1)

Figure 3: Multi-round two party see-saw mechanism.

gets refunded back to P2, and no party is penalized. Note that if P1 does claim Tx1, then P2 is able to claim Tx2, and
the parties even out as well as obtain both T1 and T2. Next, we consider the case when P2 aborts the protocol, i.e.,
does not claim Tx2. In this case, Tx2 gets refunded back to P1. Also, P1 would have already gained coins(q) after
claiming Tx1 and hence is compensated at the end of the protocol.

We use the following notation to simplify the presentation: for r ∈ [m], let TTr = ∧rs=1(Ts,1 ∧ · · · ∧ Ts,n), and
for i ∈ [n] and r ∈ [m], let TTr,i = TTr−1 ∧ (∧ij=1Tr,j). (Here TT stands for “transcript.”) Also, let “(r′, i′) > (r, i)”
if either (1) r′ > r, or (2) r′ = r and i′ > i.
Multi-round two-party see-saw mechanism. The sequence of transactions is shown in Figure 3 where τr′,i′ > τr,i
iff (r′, i′) > (r, i). As in the single-round case, the reveals are made in reverse: namely, P1 first claims Tx1,1. Using
TT1,1 = T1,1 revealed by P1, party P2 is now able to claim Tx1,2 by revealing TT1,2 = T1,1 ∧ T1,2. Likewise parties
P1 and P2 take turns claiming each others’ F?CR transactions.

We first consider aborts during the initial deposit phase. Suppose Pi aborts without making Txr,j for j 6= i and
some r. First, this ensures that (1) Pj does not make Txr′,i for (r′, i) < (r, j), and (2) Pj will never reveal Tr,j
(since Tr,j needs to be revealed only to claim Txr′,i′ for (r′, i′) ≥ (r, j)), and (3) no party can claim Txr′,i′ for
(r′, i′) ≥ (r, j) (since Tr,j is necessary to claim Txr′,i′), and (4) all the deposits Txr′,i′ for (r′, i′) > (r, i) (i.e., those
that were made so far) will get automatically refunded after τr′,i′ (since Tr,j is need to claim this, but is never revealed
by Pj). Thus in such a situation neither party stands to gain or lose coins. Next, we discuss aborts by parties in the
reveal phase.

First suppose P1 aborts without claiming Tx1,1. In this case, dishonest P1 will never obtain T1,2. This is because
P2 would not have obtained T1,1 from P1, and hence cannot claim Tx1,2. Now note that all deposits Txr,i for (r, i) ≥
(1, 2) require T1,2, and hence none of these deposits can be claimed. Thus we have that neither party stands to lose or
gain coins. Recall that this corresponds to the case where the reveal phase hasn’t started yet, and so parties don’t get
penalized yet.

Recall that once the reveal phase starts, we must penalize every party that did not reveal its token during its turn.
Suppose P1 does claim Tx1,1 (i.e., the reveal phase has started). Then in this case, P2 is down coins(q) while P1 is
up coins(q). If P2 aborts at this stage, then essentially P2 has compensated P1 with coins(q). On the other hand if P2

claims Tx1,2, then note that it gets coins(2q) from that claim. Thus, it is now coins(q) up while P1 is down coins(q).
It is easy to see that as the remaining claims are made, parties take turns going up and down coins(q) (hence the name
“see-saw”). Thus we have the property that whenever a party Pi claims Txr,i (except for (r, i) = (m, 2)), it gains
coins(q) while the other party loses coins(q). This incentivizes the other party to go ahead and claim F?CR transaction
immediately above Txr,i, say Txr′,i′ . Indeed if the other party does not make the claim, then we have that the honest
party (i.e., Pi) is compensated with coins(q) at the end of the protocol. This is because if Txr′,i′ is not claimed, then
either (1) (r′, i′) = (m, 2), and this case Pi does not lose coins from this transaction, and simply ends the protocol with
coins(q) as compensation, or (2) (r′, i′) 6= (m, 2), in which case Pi will never reveal Tr+1,i thus making it impossible

11

for any Txr′′,i′′ to be claimed for any (r′′, i′′) ≥ (r+1, i), essentially ensuring that no further money transfers happen,
and that Pi can end the protocol with coins(q) as compensation. Finally, in an honest execution, when P2 claims the
last transaction Txm,2 it gets only coins(q) from that claim, and thus in this case both parties even out.
Multiparty locked ladder mechanism. Generalizing the two party solution is nontrivial. To better understand the
complications we will first look a naı̈ve 3-party protocol.
Naı̈ve single-round 3-party case. The high level idea is to try and ensure that all parties are already compensated by
Pi just before the step where party Pi is required to reveal Ti. Then after Pi is supposed to reveal Ti, we get the
compensation that was delivered to the parties back to Pi. (Observe that we do not need to apply the above strategy
for i = 1.) Consider the following implementation of the above strategy:

ROOF DEPOSITS. For j ∈ {1, 2}:

Pj
TT3−−−−−−−−−−−−−−→
q,τ3,j

P3

THIRD STAGE DEPOSITS.

P3
TT2−−−−−−−−−−−−−−→

3q,τ2,3
P2

SECOND STAGE DEPOSITS.

P2
TT1−−−−−−−−−−−−−−→
q,τ3,2

P3

FIRST STAGE DEPOSITS.

P2
TT1−−−−−−−−−−−−−−→
q,τ1,2

P1

To see why the above may be a faithful implementation of the strategy, note that the end of the first two deposit
stages, P2 has already compensated both P1 and P3 with coins(q), i.e., P2 has lost coins(2q). Then, in the third stage,
it claims coins(3q) from P3 by revealing T2. This is effectively equivalent to P3 compensating P2 with coins(q), and
learning T1 and T2. That is, at the end of the third stage, it is P3’s turn to reveal T3, and both P1 and P2 have already
been compensated with coins(q) by P3. Then, in the roof stage, P3 claims back coins(q) from both P1 and P2 by
revealing T3 (along with T1, T2), and thus all parties even out.

The problem with the above scheme is that it is not resistant to a “coalition attack.” Consider a malicious P2

that does not make the first and second stage deposits. Recall that the roof deposits and the third stage deposits have
already been made. Now a malicious coalition of P1 and P2 possesses both T1 and T2, i.e., TT2 and can claim the third
stage deposit of coins(3q). While P3 can use TT2 to claim the roof deposits, and learn all the tokens, it does so at an
expense of coins(q) (i.e., it claims coins(2q) from the roof deposits but has lost coins(3q) in the third stage deposits).
This is clearly an undesirable situation as the honest party has lost coins(q).

To avoid the “coalition attack,” we now introduce two new ideas that will help us construct our multiparty protocol.
The first idea is a locking mechanism that prevents the collusion attack that we just described on our naı̈ve 3-party
protocol. The second is an integration of the first idea with the ladder mechanism of [10] which allows transitions
between different stages of the protocol. We explain these two ideas below.
Locking mechanism. Recall that the high level idea in our naı̈ve 3-party protocol was to ensure that all parties are
already compensated by Pi just before the step where party Pi is required to reveal Ti. Then after Pi reveals Ti, we
get the compensation that was delivered to the parties back to Pi. That is, we have a set of transactions S+i where Pi
claims coins(q) each from a set of parties, followed by a set of transactions S−i where the same set of parties each
claim coins(q) from Pi. (Recall that transactions in S−i are claimed first, which forces Pi to reveal Ti and claim
transactions in S+i.)

The general form of the attack on the naı̈ve protocol is that Pi aborts when it has to make transactions in S−i. Then
colluding with parties P1, . . . , Pi−1, party Pi starts claiming transactions in S+i. This allows Pi to unfairly obtain
additional coins from parties Pi+1, . . . , Pn while ensuring that they are unable to claim deposits in S−i.

12

The main idea that we use to prevent such attacks is to “lock” transactions in S+i such that they can be “unlocked”
and claimed only if the transactions in S−i were already claimed. To do this, we make use of “dummy tokens” Ui,j
that will be used by Pj (and known only to Pj) to lock transactions in S+i. (We will generate these dummy token via
an initial MPC protocol. A similar strategy is used to “bootstrap” the computation, and we defer details until then.)
More concretely, to claim the transaction from Pj in S+i, party Pi needs to produce Ui,j in addition to TTi. Then to
enable an honest Pi to claim transactions in S+i, we let party Pj to claim transactions in S−i only if it produces Ui,j
in addition to TTi−1.
Ladder mechanism. While the above locking mechanism deals with aborts in the deposit phase, we must obviously be
wary of aborts in the reveal phase. Indeed, it turns out that the locking mechanism alone does not suffice. To see why,
watch what happens when it is (honest) Pi’s turn to reveal the witness, and yet none of the parties claim transactions
in S−i thus disabling Pi from revealing its token. In effect, all parties other than Pi have aborted, and yet Pi does not
receive any compensation, thus violating our requirements. For a more concrete example of what we refer to as the
“locked-out attack,” consider the naı̈ve 3-party protocol enhanced with the locking mechanism (i.e., both second stage
as well as the third stage deposits are locked). Now P1 claims the first stage deposit, and after that P3 simply aborts
without claiming the second stage locked transaction. This will disallow P2 from claiming the third stage deposit as it
remains locked. Thus, essentially P3 aborted the protocol, and yet P2 does not gain coins(q) (in fact, it loses coins(q)
here).

The above attack naturally leads us to include a F?CR transaction to Pi that can be claimed just by revealing TTi,
i.e., it is essentially an unlocked transaction. What the above would ensure is that Pi will never be stranded in a
situation where it wishes to reveal its token, and yet is unable to claim any transactions. While the above is true,
unfortunately if we include unlocked F?CR transactions from each Pj to Pi (i.e., those that can be claimed just using
TTi), then we have negated the locking mechanism, and are back to square one. Thus, what we want to do is to give
a chance to Pi to avoid the “locked-out attack” while at the same time preventing the “coalition attack.” To do this,
we let only Pi+1 make an unlocked F?CR transaction to Pi that can be claimed by revealing just TTi. In some sense,
this breaks the symmetry of the protocol, but it also gives us a chance to make use of the ladder mechanism of [10].
That is, following [10], we let Pi+1 make an unlocked F?CR transaction to Pi for coins(i · q) that can be claimed by
revealing TTi. We present our protocol in Figure 4.

ROOF DEPOSITS. For each j ∈ [n− 1]:

Pj
TTn−−−−−−−−−−−−−−−−−→

q,τ2n−2

Pn

LADDER DEPOSITS. For i = n− 1 down to 1:

• Rung unlock: For j = n down to i+ 1:

Pj
TTi∧Ui,j−−−−−−−−−−−−−−−−−→
q,τ2i−1

Pi

• Rung climb:

Pi+1
TTi−−−−−−−−−−−−−−−−−→
i·q,τ2i−2

Pi

• Rung lock: For each j = n down to i+ 1:

Pi
TTi−1∧Ui,j−−−−−−−−−−−−−−−−−−−→
q,τ2i−2

Pj

Figure 4: Locked ladder mechanism.

At a high level, the protocol proceeds by getting a roof deposit from each of the parties to Pn that can be claimed

13

if Pn produces TTn. Next, we enter the ladder deposits for each i = n − 1 down to 2 (note the order is important),
where party Pi receives a deposit that is locked with token Ui,j from each party Pj for j > i (these correspond to
S+i), an unlocked deposit from Pi+1 that can be claimed if Pi reveals TTi, and makes deposits to Pj for j > i that are
locked with Ui,j (these correspond to S−i). Note that deposits in S−i can be claimed with TTi−1 (in addition to Ui,j),
and that deposits in S+i can be claimed with TTi (in addition to Ui,j). Finally, we have the foot deposit (essentially
foot of the ladder that involves P1) where P2 makes a deposit to P1 that can be claimed with T1.

As usual these deposits will be claimed in reverse. That is, P1 first claims the floor deposit by revealing T1. Then
parties enter the ladder reveal phase. As in [10], the parties metaphorically climb the ladder as they take turns claiming
the ladder deposits. The difference from [10] is that before climbing a rung of the ladder, parties first do a “rung lock”
step, and after they climb the rung, they perform a “rung unlock” step. Hence, while the protocol is being executed, Pi
first pays the parties above it (who haven’t “played” yet), but Pi will then immediately be able to “play” by extending
TTi−1 and thereby reclaim these coins that it paid, thus avoiding the locked-out and coalition attacks.

As in the ladder mechanism of [10], once the i-th ladder deposit is claimed, parties P1 through Pi become “inac-
tive” in the sense that they no longer claim any deposits and nor are any of their ladder deposits remain unclaimed.
(In fact their only unclaimed deposits are those that are part of the roof deposits.) It is easy to see that the “inactive”
parties are always coins(q) up after the i-th ladder rung unlock deposits are claimed, and that they remain coins(q) up
until the beginning of roof claims. As it turns out, the lock and ladder mechanisms are sufficient to deal with aborts in
the deposit and reveal phases, respectively.
Multiparty see-saw mechanism. Our idea is to mimic the two-party see-saw mechanism. That is, all we need to do
is to ensure that the end of each of the m rounds, party P1 has already compensated coins(q) to every other party, and
is thus incentivized to send the first token for the next round. This is quite straightforward to implement. For every
round we invoke an instance of the single-round locked ladder mechanism (with the transcript verification circuits
corresponding to the round of the protocol). These instances are invoked sequentially, and thus the timelocks have to
be set accordingly.

Recall that at the end of the reveal phase of every instance of the locked ladder mechanism, parties have either
already been compensated, or they learn all the protocol messages for the round, and are all evened out w.r.t. deposits.
Then to apply the see-saw idea, we need to introduce new “chain” deposits between successive instances of the locked
ladder mechanism.

CHAIN DEPOSITS.

• For j = 2 to n:

Pj
TTr+1,1−−−−−−−−−−−−−−−−→
q,τr+1,1

P1 (Txchain
j,1)

• For j = 2 to n:

P1
TTr,n−−−−−−−−−−−−−−−→

q,τr+1,1

Pj (Txchain
1,j)

Remark. Note that solving the single-round multiparty case yields a solution to the multi-round multiparty case as
well. To see why, let us denote the problem for the m-round n-party case by LLm,n. Then the problem LLm,n is
obtained by simply “folding” LL1,nm. That is, for i ∈ [nm], interpret Pi’s move in LL1,nm as Pi mod n’s move in the
(bi/nc + 1)-th round of LLm,n. The key observation behind why this transformation is secure is that any protocol π
solving LL1,nm is resistant to malicious coalitions of any subset of nm parties, and therefore, the “folded” m-round
n-party protocol obtained from π is also resistant to any coalitions of subset of the n parties. Since the protocol in
Figure 4 solves the single-round multiparty case, we trivially obtain the multi-round multiparty solution.

However note that the efficiency of such a solution obtained for the m-round two-party case i.e., for LLm,2 by
using the 2m-party locked ladder mechanism, has worse efficiency than the two-party see-saw protocol from Figure 3.
While the see-saw protocol requires parties to each deposit coins(2mq), the amount deposited in the ladder grows as
O(m2q).

Bootstrapping. Finally we focus on how to incentivize P1 to start the protocol (i.e., reveal T1,1) or otherwise pay
penalty. To do this, we make use of “dummy tokens” {U1,j}j∈{2,....n}. These dummy tokens are obtained by the
parties via an initial secure computation step. In more detail, for all j ∈ [n] \ {1}, the secure computation protocol:

14

• chooses U1,j ← {0, 1}λ and ωboot
1,j ← {0, 1}λ at random;

• computes comboot
1,j ← S(1λ, U1,j , ω

boot
1,j);

• outputs comboot
1,j to all parties and (U1,j , ω

boot
1,j) to Pj ,

where S is the sender algorithm of a honest binding commitment scheme. Note that comboot
1,j is computed in order to

allow parties to generate the verification circuit for transaction Txboot
1,j and Txboot

j,1 described below. Also, we stress that
for j 6= 1, the dummy token U1,j is unknown to P1; it only knows the corresponding commitment comboot

1,j . (We note
that the above MPC step can be combined with the MPC step for handling the cash distribution step (cf. Section 4)
as well as for generating the dummy tokens {Ui,j} in the lock mechanism.) Consider the following set of deposit
transactions where τ1 > τ0:

BOOTSTRAP DEPOSITS.

• For j = 2 to n:

Pj
T1∧U1,j−−−−−−−−−−−−−−−−−→
q,τ1

P1 (Txboot
j,1)

• For j = 2 to n:

P1
U1,j−−−−−−−−−−−−−−→
q,τ0

Pj (Txboot
1,j)

That is, first each Pj makes a deposit Txboot
j,1 to P1, and then P1 makes deposits Txboot

1,j to each Pj . Then in the
reveal phase, the claims are made in reverse: each Pj first claims Txboot

1,j using the dummy token U1,j . Now P1 learns
U1,j , and since it already knows T1, it can go ahead and claim each Txboot

j,1 . More importantly, note that once the
bootstrap deposits are made, an honest Pj will always claim Txboot

1,j , and thus will be coins(q) up. Thus the onus is on
P1 to deliver the first token (and to reclaim its coins(q)), failing which it effectively pays a penalty coins(q) to each
honest party. The bootstrap deposits will be the last deposits to be made in the initial deposit phase, and will be the
first deposits to be claimed in the reveal phase.

We are now ready to state our main theorem. Since the ideal oblivious transfer primitive FOT is suffficient to
obtain a common random string, we can then apply e.g., [21] to obtain:

Theorem 2. Let (F, d?) be a bounded zero-sum reactive distribution as in Definition 2. Then assuming the existence of
enhanced trapdoor permutations, there exists a protocol that SCC-realizes (cf. Definition 1) F?F,d? in the (FOT,F?CR)-
hybrid model.

Proof sketch. The main idea behind the proof is that the witnesses used to claimF?CR transactions are simply successive
messages of a secure computation protocol πF that realizes that standard reactive functionality FF . Since πF is secure
by definition, we have that the computation also proceeds securely. To do the simulation, we make use of (1) the
simulator for πF , (2) the simulator for initial MPC step (alternatively access to ideal unfair functionality realized in
the FOT-hybrid model) that generates the dummy tokens for the lock mechanism, the bootstrap deposits (i.e., the
values {Ui,j}), and also for the cash deposits at the end (i.e., the values {T fin

i,j,k}), and (3) the simulator algorithms
for honest-binding commitments. Simulating the coins part of the protocol is more involved but closely follows the
simulation of the ladder mechanism in [10]. We defer further details to the full version.

6 Efficient Poker Protocol
In this section we describe an optimized protocol for Texas hold ‘em poker that avoids non-black-box use of a secure
computation protocol. Our key observation is that in each stage, only player Pi has an input in a stage of the computa-
tion that corresponds to player Pi’s r-th round move. Let (S,R) be a non-interactive honest binding commitment (cf.
Definition 3, Appendix A). Parties run a secure computation protocol that does the following:

• selects hands hi uniformly at random for each party Pi, as well as the five community cards y1, . . . , y5;

15

• performs an n-out-of-n secret sharing of each hand hi to obtain {hi,j}j∈[n], and a n-out-of-n secret sharing of each
of the five cards yk to obtain {yk,j}j∈[n];

• applies the sender algorithm of an honest-binding commitment using random ωhi,j to secret share hi,j to obtain
comh

i,j and set Taghi,j = comh
i,j and Tokenhi,j = (hi,j , ω

h
i,j);

• applies the sender algorithm of an honest-binding commitment using random ωyi,j to secret share yi,j to obtain comy
i,j

and set Tagyi,j = comy
i,j and Tokenyi,j = (yi,j , ω

y
i,j);

• sets AllTags = {Taghi,j ,Tagyi,j}i,j∈[n]; and

• delivers AllTags, {Tokenhi,j ,Tokenyi,j}j∈[n] to each Pi.

Note that at the end of this step, none of these cards are delivered to the parties. Instead all of these cards (including
each party’s hands) are simply secret shared among the parties. In addition, parties also receive (honest-binding)
commitments on all the shares, and the decommitments to the shares held by them. These are given so that parties can
later verify if each party indeed reveals the correct shares by sending the decommitments corresponding to the public
commimtments.

Once this is done, parties make a series of deposits as in the see-saw (alternatively, locked ladder) mechanism. We
defer the description of the φi,r for these deposits, and first focus on the structure of the protocol. Each party Pj is first
required to reveal Hj = {hi,j}i∈[n]\{j}, i.e., the secret shares of other party’s hands. This is so that each party learns
its private hands. Here we will make use of the see-saw mechanism to ensure that each party Pj either reveals Hj or
pays a penalty to all other parties. The verification circuits for the F?CR transactions will depend on comh

i,j generated
in the initial secure computation step.

Next parties enter a round of (pre-flop) betting. Here we assume a bound on maximum number of stages of betting
(this is so that we can ensure that parties make all the necessary F?CR deposits in the see-saw mechanism). To place
a bet, party Pi simply sends the entire transcript of bets made so far in this hand along with its new bet. Note that
each party signs its bet when it makes one, and thus when parties send a transcript containing the bets, they must
also contain the necessary signatures. We assume that there is a well-defined function tvr,i (tv stands for “transcript
validity”) that takes the transcript of the poker game so far (including bets made so far, and the new bet made by party
Pi in round r), and verifies if it is a valid bet. Note that a bet bi made by Pi simply specifies the additional amount of
coins it is willing to bet during its turn in pre-flop betting round. (Similarly to fold, Pi simply sends a signed “fold”
message.) We wish to stress that no actual coins related to the bet amounts are transferred in this phase. (These will
all be transferred at the very end of the protocol.)

Now note that once this round of betting ends, the flops needs to be revealed to all the parties. We adopt the same
strategy that we used to reveal each party’s hands. That is, each party Pj is required to reveal Y 1

j = {y1,j , y2,j , y3,j},
i.e., the secret shares of the flop. Once again we will make use of the see-saw mechanism to ensure that each party Pj
either reveals Y 1

j or pays a penalty to all other parties.
Two additional rounds of betting take place before revealing the turn and the river. These are handled exactly like

the pre-flop betting. Once all the community cards are revealed, parties that wish to claim the pot start revealing their
cards. That is, parties execute an additional stage where they take turns to reveal their cards, i.e., reveal their share hi,i
(which reveals their hand). Once all parties complete the showdown round, and the entire transcript TTm,n is available,
then the pot winner can be determined. Note that we run only one MPC at the very beginning, and AllTags generated
in this step is sufficient to design the verification circuits for all F?CR deposits in the see-saw mechanism. Since the
see-saw mechanism now applies, any party that aborts the protocol before the winner has been determined will pay a
penalty to all other parties.

The above description turns out to be sufficient to realize “mental poker” [1], but is not sufficient to realize standard
poker (i.e., poker with money). This is because we still haven’t let the winner(s) take the pot. Next we describe the
cash distribution stage. Let d? = (d?1, . . . , d

?
n), and for each i ∈ [n], let mi = dlog(d?i)e. As in Section 4, for every

ordered pair (i, j) with i, j ∈ [n] and i 6= j, and for each k ∈ [mi], we let Pi make an F?CR transaction as follows (we
slightly abuse the F?CR notation and use the verification circuit instead of the verifying witness):

Pi
φfin
i,j,k−−−−−−−−−−−−−−−−−−→
2k,τ0

Pj (Txfin
i,j,k)

where verification circuit φfin
i,j,k takes TTm,n as input and:

16

• outputs 0 and terminates if tvm,n(TTm,n) = 0;

• computes z? = (z?1 , . . . , z
?
n) using TTm,n, where z?i represents the amount which party Pi is supposed to get at the

end of the protocol;

• computesA = g(d?, z?) (cf. Observation 1), lets ai,j denote the (i, j)-th entry of matrixA, and lets b?i,j,1, ..., b
?
i,j,mi

be the binary representation of ai,j ;

• outputs 1 if b?i,j,k = 1, else outputs 0.

Efficiency. Note that each party Pi makes (n − 1) ·mi calls to F?CR and deposits a total of (n − 1) · d?i coins. For
implementing the see-saw mechanism we require O(n2m) calls to F?CR and each party to make a maximum deposit
of O(nm) where m represents the bound on the maximum number of betting rounds in a hand. Note that we can
preprocess both the secure computation, as well as the initial deposit phase (thus managing the long waiting times
for transaction confirmation offline). Other than this, note that the messages in our secure poker protocol are mostly
signed messages indicating the player’s move, and thus not very different from the messages in an insecure poker
protocol.

7 Conclusions
In this paper, we introduced and designed efficient protocols for secure cash distribution, a powerful primitive that
provides a strong notion of dropout tolerance, and suffices to capture multiplayer games such as poker.

References
[1] A. Shamir, R. Rivest, and L. Adleman, “Mental poker.” The Mathematical Gardener., pp. 37–43, 1981.

[2] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, Nov. 1982, pp. 160–164.

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game, or a completeness theorem for
protocols with honest majority,” in 19th Annual ACM Symposium on Theory of Computing (STOC), A. Aho, Ed.
ACM Press, 1987.

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure multiparty computations on bit-
coin.” in IEEE Security and Privacy, 2014.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008, http://bitcoin.org/bitcoin.pdf.

[6] M. Green, “Poker is hard, especially for cryptographers,” http://blog.cryptographyengineering.com/2012/04/
poker-is-hard-especially-for.html, 2013.

[7] M. Jakobsson, D. Pointcheval, and A. Young, “Secure mobile gambling,” in Cryptographers’ Track — RSA 2001,
ser. LNCS, D. Naccache, Ed., vol. 2020. Springer, Apr. 2001, pp. 110–125.

[8] A. Back and I. Bentov, “Note on fair coin toss via bitcoin,” http://arxiv.org/abs/1402.3698, 2013.

[9] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Fair two-party computations via the
bitcoin deposits.” in First Workshop on Bitcoin Research, FC, 2014.

[10] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair protocols.” in Crypto (2), 2014, pp. 421–439.

[11] R. Canetti, “Universally composable security: A new paradigm for cryptographic protocols,” in 42nd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, Oct. 2001.

[12] “Bitcoin CVEs,” https://en.bitcoin.it/wiki/CVEs#CVE-2010-5141.

[13] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct computations.” in CCS, 2014.

17

http://bitcoin.org/bitcoin.pdf
http://blog.cryptographyengineering.com/2012/04/poker-is-hard-especially-for.html
http://blog.cryptographyengineering.com/2012/04/poker-is-hard-especially-for.html
https://en.bitcoin.it/wiki/CVEs#CVE-2010-5141

[14] G. Andresen, “Turing complete language vs non-turing complete.” https://bitcointalk.org/index.php?topic=
431513.20#msg4882293.

[15] A. Yao, “How to generate and exchange secrets (extended abstract),” in FOCS, 1986, pp. 162–167.

[16] R. Cleve, “Limits on the security of coin flips when half the processors are faulty (extended abstract).” in STOC,
1986, pp. 364–369.

[17] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” Cryptology ePrint Archive, Report 2015/675, 2015, http://eprint.iacr.org/
2015/675.

[18] O. Goldreich, “Foundations of cryptography - vol. 2,” 2004.

[19] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better - how to make bitcoin a better currency.” in FC, 2012.

[20] G. Maxwell, “Zero knowledge contingent payment. 2011,” https://en.bitcoin.it/wiki/Zero Knowledge
Contingent Payment.

[21] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable two-party and multi-party secure
computation,” in 34th Annual ACM Symposium on Theory of Computing (STOC). ACM Press, May 2002, pp.
494–503.

[22] J. A. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou, “Adaptively secure broadcast, revisited.” ACM Press,
2011, pp. 179–186.

[23] S. Goldfeder, J. Bonneau, E. W. Felten, J. A. Kroll, and A. Narayanan, “Securing bitcoin wallets via threshold
signatures,” http://www.cs.princeton.edu/Sstevenag/bitcoin threshold signatures.pdf, 2014.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold dss signatures.” Information and Compu-
tation, vol. 164, pp. 54–84, 2001.

A Formal Definitions
Definition 3 (Honest binding commitments [22]). A (non-interactive) commitment scheme for message space {Mλ}
is a pair of PPT algorithms S,R such that for all λ ∈ N, all messages m ∈ Mλ, and all random coins ω it holds that
R(m,S(1λ,m;ω), ω) = 1. A commitment scheme for message space {Mλ} is honest-binding if:
Binding (for an honest sender) For all PPT algorithmsA (that maintain state throughout their execution), the follow-
ing is negligible in λ:

Pr


m← A(1λ);
ω ← {0, 1}∗; com← S(1λ,m;ω);
(m′, ω′)← A(com, ω) :

R(m′, com, ω′) = 1
∧
m′ 6= m


Equivocation There is an algorithm S̃ = (S̃1, S̃2) such that for all PPT A (that maintain state throughout their
execution) the following is negligible:∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 m← A(1λ);
ω ← {0, 1}∗; com← S(1λ,m;ω) :
A(1λ, com, ω) = 1


−Pr

 (com, st)← S̃1(1
λ);

m← A(1λ); ω ← S̃2(st,m) :
A(1λ, com, ω) = 1



∣∣∣∣∣∣∣∣∣∣∣∣
Equivocation implies the standard hiding property. Also, observe that binding holds for commitments generated

by (S̃1, S̃2). As observed in [10], we can construct highly efficient heuristically secure honest binding commitment
schemes in the programmable random oracle model. In the following let Hash be a programmable hash function, and

18

https://bitcointalk.org/index.php?topic=431513.20#msg4882293
https://bitcointalk.org/index.php?topic=431513.20#msg4882293
http://eprint.iacr.org/2015/675
http://eprint.iacr.org/2015/675
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
http://www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf

let ω ∈ {0, 1}λ. We describe the algorithms S,R (algorithms S̃1, S̃2 are obtained by standard oracle programming
techniques).

S(1k,m;ω)
return com := Hash(m‖ω);
R(m, com, ω)

If com
?
= Hash(m‖ω)

return 1;
else return 0;

B Secure Cash Distribution With an Honest Majority
Boiled down, the difficulty in constructing protocols for secure cash distribution is the issue of fairness: the protocols
must force aborting players to compensate honest players who didn’t receive output. In the honest majority setting,
we have protocols for general secure computation with guaranteed output delivery. This means malicious players
cannot prevent the honest parties from receiving the correct output. We can make use of this fact to design simple (and
practical) secure cash distribution protocols in the honest majority setting.

The honest-majority secure cash distribution protocol supports n parties P1, . . . , Pn, of which at most t are corrupt
(where t < n

2). Our implementation requires three ingredients (which we use in a black-box way):

1. A threshold mechanism for controlling funds. That is, a mechanism that allows funds to be committed in such
a way that they can be spent only with if a majority of parties cooperates to do so. In Bitcoin, this can be done
in several ways: using multi-signature transactions, using a threshold version of the Bitcoin ECDSA signature
scheme (existing threshold versions require 2/3 of the parties to be honest [23, 24]) or using generic secure
computation protocols to compute the signatures.

2. A (t + 1, n) threshold secret-sharing scheme. This allows a dealer to divide a secret s into n shares, such that
any set of t shares provides no information about s, but any set of t+1 shares can be used to reconstruct s. Such
schemes exist with information-theoretic security (e.g., Shamir secret sharing). We denote [s]i the i-th share of
the secret s.

3. An honest-majority secure computation protocol with guaranteed output delivery.

The protocol implements a stronger variant of the F?F,d? functionality, in which output (and the correct cash
distribution) is guaranteed regardless of the adversary’s actions (the adversary can refuse to participate at all, in which
case no output or cash distribution occurs). We now describe the final protocol below.
Deposit Phase

1. For every i ∈ {1, . . . , n}, party Pi commits the maximum penalty payment into a fund that can be controlled by
any subset of t+ 1 parties.

2. If any party aborted during the penalty commitment phase, the honest parties cooperate to refund any payments
made so far.

Computation Phase. For each ` = 1, . . . , ρ, all parties participate in an secure computation protocol for round `.
Party Pi has inputs [state`−1]i (state0 is defined to be NULL) and x`,i (the input x`,i can be computed as an arbitrary
function of party Pi’s view up to round `). The secure computation protocol uses the secret-sharing reconstruction
algorithm to reconstruct state`−1 from the shares, and computes (z`, state`) ← f?` (x`; state`−1). Party Pi receives
z`,i and [state`]i.

Note that the secure computation protocol guarantees output delivery; parties who do not participate in the secure
computation protocol (or abort at an early stage) have their inputs replaced with defaults.

In the final round, the output of the secure computation protocol also includes the vector z∗, consisting of the coin
transfer amounts to/from each party.
Distribution Phase. All parties cooperate to transfer the funds committed in the deposit phase according the computed
coin transfer vector z∗.

19

B.1 Security Proof Sketch
The proof of security is straightforward, and directly relies on the guaranteed output delivery of the secure computation
protocol and the threshold properties of the fund controlling mechanism and the secret-sharing scheme:

• If any party aborts during the deposit phase, the remaining honest parties suffice to control the funds committed
so far, hence they can issue refunds even without the cooperation of the malicious parties.

• If the deposit phase completed successfully, all parties have committed the required funds. A party that aborts
in any of the subsequent phases can no longer prevent the computation from proceeding: the honest parties hold
t + 1 shares of the state at every step in the computation phase, so the secure computation protocol can always
reconstruct the state correctly, and the secure computation protocol itself can always execute to completion due
to the guaranteed output delivery property.

• Finally, in the distribution phase the honest parties suffice to control the committed funds, so the cooperation of
the malicious parties is not required.

C Extensions
We note that in this model, the protocol can easily be extended to support an a-priori unknown number of rounds
(the output of the function f?` can specify whether or not to continue to the next round), as well as coin distribution
in intermediate rounds, rather than just at the end (as long as a bound on the total number of distributed coins is
known—the initial deposit must be larger than this bound).

D Protocol for Secure Cash Distribution
In this section, we give a formal description of our protocol that realizes secure cash distribution F?F,d? (cf. Section 3).

Secure cash distribution with penalties

PRELIMINARIES.

• Let (F, d?) be a bounded zero-sum reactive distribution as in Definition 2, where F = (f1, . . . , fρ).

• Let π denote a protocol realizing F such that in each round of π, parties take turns to broadcast their
message (e.g., [3, 21]).

• Let m denote the number of rounds in the protocol π.

• Let TTπr,i denote the transcript of an execution of protocol π up until and including party Pi’s message in
the r-th round.

• Let nmfr,i denote the next message function for party Pi in round r.

COMMIT TO RANDOM SECRETS FOR ALL THE LOCKED-LADDER ROUNDS.

• All parties invoke a SFE protocol that for all r ∈ [m], i ∈ [n] \ {1}, j ∈ [n] \ [i]:

– chooses Ur,i,j ← {0, 1}λ and ω̂r,i,j ← {0, 1}λ at random;

– computes ucomr,i,j ← S(1λ, Ur,i,j , ω̂i,j,k);

– outputs ucomr,i,j to all parties, and each (Ur,i,j , ω̂r,i,j) to Pj .

COMMIT TO RANDOM SECRETS FOR THE BOOTSTRAPPING STEP.

20

• All parties invoke a SFE protocol that for j ∈ [n] \ {1}:

– chooses U1,j ← {0, 1}λ and ωboot
1,j ← {0, 1}λ at random;

– computes ucomboot
1,j ← S(1λ, U1,j , ω

boot
1,j);

– outputs ucomboot
1,j to all parties and (U1,j , ω

boot
1,j) to Pj .

COMMIT TO RANDOM SECRETS FOR THE FINAL CASH DISTRIBUTION.

• All parties invoke a SFE protocol that ∀i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

– chooses T fin
i,j,k ← {0, 1}λ and ωfin

i,j,k ← {0, 1}λ at random;

– computes comfin
i,j,k ← S(1λ, T fin

i,j,k, ω
fin
i,j,k);

– n-out-of-n secret shares each (T fin
i,j,k, ω

fin
i,j,k);

– outputs comfin
i,j,k and the i-th share of (T fin

i,j,k, ω
fin
i,j,k) to each Pi.

• For each i = 1 to n:

– Pi makes the F?CR transaction Pi
φfin
i,j,k−−−−−→
2k,τ

Pj , where the circuit φfin
i,j,k has comfin

i,j,k hardcoded into it,

takes (T fin
i,j,k, ω

fin
i,j,k) as input, and is satisfied iff R(T fin

i,j,k, comfin
i,j,k, ω

fin
i,j,k) = 1 (cf. Appendix A).

ENSURE THAT SIGNING MULTIPLE TRANSCRIPTS WILL BE PUNISHED.

• For each i = 1 to n:

– Pi makes the F?CR transaction Pi
φvio
i−−−−→

nq,τ ′
Pj , where the circuit φvio

i is satisfied if it is given as input

two extensions of the protocol’s execution (with the same unique starting nonce) that are signed by
Pi, and the timelock τ ′ is a value such that τ ′ > τ .

PREPARE THE SEE-SAW TRANSACTIONS.

• Let φr,i be a circuit that takes a protocol transcript as input and verifies that for all (r′, i′) ≤ (r, i) the
message in round r′ by party Pi′ is a valid next message of the protocol according to nmfr′,i′ , and is signed
by Pi′ .

• Let φr,i,j be a circuit that has ucomr,i,j hardcoded into it, takes (Ui,j,k, ω̂r,i,j) as input, and is satisfied iff
R(Ur,i,j , ucomr,i,j , ω̂r,i,j) = 1.

• Let τ0,0 < . . . < τm,2n−1 < τm,2n−2 < τ be successive timelock values.

• Handle all the locked-ladder rounds. For r from m down to 1:

– Roof deposits. For each j ∈ [n− 1]:

Pj
φr,n−−−−−−−−−−−−−−−−−→

q,τr,2n−2

Pn

– Ladder deposits. For i = n− 1 down to 2:

∗ Rung unlock: For j = n down to i+ 1:

Pj
φr,i∧φr,i,j−−−−−−−−−−−−−−−−−−→
q,τr,2i−1

Pi

∗ Rung climb:

21

Pi+1
φr,i−−−−−−−−−−−−−−−−−→
i·q,τr,2i−2

Pi

∗ Rung lock: For each j = n down to i+ 1:

Pi
φr,i−1∧φr,i,j−−−−−−−−−−−−−−−−−−−−→
q,τr,2i−2

Pj

– Foot deposit.

P2
φr,1−−−−−−−−−−−−−−−−−→
q,τr,1

P1

• Handle the chain deposits between rounds. For r from m− 1 down to 1:

– For j = 2 to n:

Pj
φr+1,1−−−−−−−−−−−−−−−−→
q,τr+1,1

P1

– For j = 2 to n:

P1
φr,n−−−−−−−−−−−−−−→

q,τr+1,1

Pj

• Let φj be a circuit that has ucom1,j hardcoded into it, takes (U1,j , ω
boot
1,j) as input, and is satisfied iff

R(Ur,i,j , ucomr,i,j , ω
boot
1,j) = 1.

• Handle bootstrapping:

– For j = 2 to n:

Pj
φ1,1∧φj−−−−−−−−−−−−−−−−−→
q,τ0,1

P1

– For j = 2 to n:

P1
φj−−−−−−−−−−−−−→

q,τ0,0
Pj

EXECUTE THE PRESCRIBED SECURE MPC.

• The parties now reclaim their locked-ladder and chain deposits from the bottom up. This implies that for
each round of the MPC, for i > 1 party Pi will broadcast a valid message that extends the protocol transcript
TTπr,i and thereby reclaim its deposit in the “rung climb” step, and party P1 will reclaim its chain deposit
by broadcasting a valid TTπr,1 transcript in the beginning of each round.

• In particular, the last round of this MPC computes the cash distribution as follows:

– computes z? = (z?1 , . . . , z
?
n) by invoking fρ;

– computes A = g(d?, z?) per Observation 1, let ai,j denote the (i, j)-th entry of matrix A, and let
b?i,j,1, ..., b

?
i,j,mi

be the binary representation of ai,j ;

– for all i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

if b?i,j,k = 1 then reconstruct T fin
i,j,k and concatenate it to the output of the last round.

COLLECT THE OUTPUT COINS.

• For each i = 1 to n:

– Pi redeems all the F?CR transactions for which T fin
i,j,k is part of the concatenated output of the MPC.

22

	Introduction
	Preliminaries
	Secure Cash Distribution
	Realizing SCD
	See-saw Mechanism
	Efficient Poker Protocol
	Conclusions
	Formal Definitions
	Secure Cash Distribution With an Honest Majority
	Security Proof Sketch

	Extensions
	Protocol for Secure Cash Distribution

