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Abstract. Topology-hiding broadcast (THB) enables parties communi-
cating over an incomplete network to broadcast messages while hiding
the topology from within a given class of graphs. THB is a central tool
underlying general topology-hiding secure computation (THC) (Moran et
al. TCC’15). Although broadcast is a privacy-free task, it was recently
shown that THB for certain graph classes necessitates computational
assumptions, even in the semi-honest setting, and even given a single
corrupted party.
In this work we investigate the minimal assumptions required for
topology-hiding communication—both Broadcast or Anonymous Broad-
cast (where the broadcaster’s identity is hidden). We develop new tech-
niques that yield a variety of necessary and sufficient conditions for the
feasibility of THB/THAB in different cryptographic settings: information
theoretic, given existence of key agreement, and given existence of obliv-
ious transfer. Our results show that feasibility can depend on various
properties of the graph class, such as connectivity, and highlight the role
of different properties of topology when kept hidden, including direction,
distance, and/or distance-of-neighbors to the broadcaster.
An interesting corollary of our results is a dichotomy for THC with a
public number of at least three parties, secure against one corruption:
information-theoretic feasibility if all graphs are 2-connected; necessity
and sufficiency of key agreement otherwise.

1 Introduction

Reliable communication between a set of mutually distrustful parties lies at the
core of virtually any distributed protocol, ranging from consensus tasks [19, 15]
to secure multiparty computation [21, 11, 5, 9]. Classical protocols from the ’80s
considered complete communication graphs between the parties, where each pair
of parties is connected by a communication channel. However, in many real-life



scenarios the parties are not pairwise connected; this raises the need for dis-
tributed interactive computations, and in particular communication protocols,
over an incomplete graph. Often, the network topology itself may be sensitive
information that should not be revealed by the protocol.

Topology-hiding broadcast. With this motivation, Moran et al. [18] formalized
the concept of topology-hiding computation (THC). Here, the goal is to allow
parties who see only their immediate neighborhood (and possibly know that the
graph belongs to some class), to securely compute arbitrary functions without
revealing any additional information about the graph topology other than the
output (computations on the graphs, e.g., establishing routing tables, are also
supported). THC is of theoretical interest, but is also motivated by real-world
settings where it is desired to keep the underlying communication graph private.
These include social networks, ISP networks, ad hoc (or mesh) networks, vehicle-
to-vehicle communications, and possible approaches for contact tracing.

Given the existence of general MPC protocols, achieving THC for arbitrary
functions hinges on communicating in a topology-hiding way, rather than on
keeping inputs private. In particular, a core bottleneck for achieving general
THC is the special case of topology-hiding broadcast (THB), where a designated
party (the broadcaster) reliably sends its message to all other parties. Indeed,
given an MPC protocol for a function f defined in the broadcast model (where
all communication is sent via a broadcast channel, possibly encrypted),8 the
parties can replace the broadcast channel by a THB protocol to obtain a THC
protocol for the function f .

Although broadcast is a privacy-free task, realizing THB turns out to be
challenging, even in the semi-honest setting where all parties follow the proto-
col. This is in stark contrast to standard (topology-revealing) broadcast, which
is trivially achievable in the semi-honest setting, e.g., simply “flooding” the net-
work, forwarding received messages. For general semi-honest corruptions, the
best THB constructions follow from a series of works [18, 12, 1, 2, 16], culminat-
ing in THB (as well as THC) protocols for all graphs. However, even for THB,
all known protocols require structured public-key cryptographic assumptions,
such as QR, DDH, or LWE.9 The use of strong assumptions was justified by
Ball et al. [3] who showed that without an honest majority, even THB implies
oblivious transfer (OT).10

A central paradigm in standard (topology-revealing) secure computation is to
exchange cryptographic assumptions with an honest-majority assumption [5, 9,
20]. A recent work of Ball et al. [4] asked whether such a paradigm can be applied
in the topology-hiding realm. The results of [4] demonstrated that answering this

8Such protocols exist in the honest-majority setting assuming key agreement, and
thus under this assumption, THB implies THC. In the information-theoretic setting
THC can be strictly stronger, as we will see.

9That is, the Quadratic Residuosity assumption, the Decisional Diffie-Hellman as-
sumption, and the Learning With Errors assumption, respectively.

10The lower bound of [3] holds for 4-party 2-secure THB with respect to a small class
of 4-node graphs, namely, a square, and a square with any of its edges removed.
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question is more subtle than meets the eye, even when considering the basic case
of one semi-honest corruption. On the one hand, they showed that information-
theoretic THB (IT-THB) can be achieved for the graph class of cycles, where the
protocol hides the ordering of parties within the cycle. On the other hand, they
identified that THB for paths of n ≥ 4 nodes (again hiding ordering) implies key
agreement.

This work. In a sense, [4] unveiled the tip of the iceberg, revealing a range of
questions: Which aspects of the topology can be hidden information theoretically,
and which require cryptographic hardness? Is key agreement sufficient for 1-
corruption THB, or are there graph classes that require stronger assumptions?
In this paper we study the cryptographic power of THB. The main question that

we ask is:

What are the minimal cryptographic assumptions
required for THB for a given class of graphs?

We focus on a minimal setting, with a small number of parties and a single,
or few, semi-honest corruptions, which we denote by t-THB for t corruptions.
This makes our lower bounds stronger; and, as we demonstrate, even this simple
setting offers a rich multi-layered terrain, and provides insights and implications
for more general settings (including THC).

Before proceeding to state our results, we note that prior THB protocols
actually achieved the stronger property of topology-hiding anonymous broadcast
(THAB), where the identity of the broadcaster remains hidden [7, 8]. From the
definitions of these primitives, we have that

THC =⇒ THAB =⇒ THB.

Thus, all lower bounds for THB (such as the one from [4] and our own results)
apply also for THAB and THC. As we will show, there are classes of graphs
where THB is possible information theoretically, but THAB, and thus THC, re-
quire strong cryptographic assumptions. Understanding for which topologies the
reverse implications hold is addressed here in part, but the full answer remains
an interesting open question.

1.1 Our Results

This work makes significant strides in mapping the landscape of THB, THAB,
and THC in minimal settings, in the process developing new techniques that may
be useful to achieve a full understanding of its complexities. As standard in the
THC literature, we consider a synchronous setting, where the protocol proceeds
in rounds.11

11LaVigne et al. [17] recently studied THC in a non-synchronous setting, demon-
strating many barriers.
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New Lower Bounds and Techniques
– THB. We explore which properties of graph topology are “hard” to hide, in

the sense of requiring cryptographic assumptions to do so. We show that
hiding any one of the properties of direction, distance, and/or distance-of-
neighbors to the broadcaster is hard—while revealing all three but nothing
else (in fact, only revealing distance-of-neighbors) can always be achieved
information theocratically, using the trivial flooding protocol.

– THAB. We observe that t-THAB for any graph class containing a graph
that is not (t+ 1)-connected12 implies key agreement. We further show that
hiding the number of participants in certain graph classes implies infinitely
often oblivious transfer, even for 1-THAB.

Unconditional & KA-Based Upper Bounds
– Unconditional. We provide a construction of 1-THAB for all 2-connected

graphs, whose complexity grows with the number of potential graphs in the
class (in particular, it is efficient for constant-size graphs), which achieves
statistical information-theoretic security.

– Key Agreement. Assuming the existence of key agreement, we achieve 1-THB
for all graphs, and 1-THAB for all graphs of ≥ 3 nodes.

Corollaries and Conclusions
– Dichotomy for 1-THC with ≥ 3 parties. An interesting corollary of our results

is a dichotomy for 1-THC with a fixed and known set of at least three par-
ties13 (i.e., where all graphs share the same vertex set): if all graphs in a class
are 2-connected, the class supports information-theoretic 1-THC; otherwise,
key agreement is necessary and sufficient for 1-THC.

– Dichotomy for 1-THAB with ≥ 3 parties. A similar result holds for 1-THAB
for a dynamic set of parties (i.e., the vertex set of every graph is a subset
of [n]) as long as each graph contains at least three nodes: if all graphs in
a class are 2-connected, the class supports information-theoretic 1-THAB;
otherwise, key agreement is necessary and sufficient for 1-THAB.

– Characterization of 1-THB for small graphs. Our results introduce several
new constructions and analysis techniques; as a demonstration of their wider
applicability, we provide a characterization of the more complex case of 1-
THB for all graph classes on four nodes or fewer. Note that the feasibility
boundaries of 1-THB are more complex than 1-THAB since, as we show,
certain lower bounds for 1-THAB do not apply to 1-THB.

– THB without OT. Our upper bounds constitute the first protocols using
machinery “below” oblivious transfer,14 aside from the specific graph class
of cycles of fixed length (that was shown in [4]).

12A graph is k-connected if and only if every pair of nodes is connected by k vertex-
disjoint paths.

13If the class of graphs contains a 2-path, then oblivious transfer is necessary for
secure computation [14].

14Note that OT is strictly stronger than KA in terms of black-box reductions, since
OT implies KA in a black-box way, but the converse does not hold [10].
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We next describe these results in more detail.

Lower Bounds We begin by investigating the conditions under which THB
and THAB for a graph class G necessitate cryptographic assumptions.

THB: Hiding direction, distance, or distance-of-neighbors. Recall that restricting
attention to a class of graphs G captures that a THB protocol hides partial infor-
mation about a graph topology. For example, if all graphs in G have property P ,
then the THB protocol need not hide whether P is satisfied when providing indis-
tinguishability within this class. Our question thus becomes: for which properties
of a graph topology is it the case that hiding necessitates cryptography?

Consider as a baseline the trivial “flooding” protocol, which in general is not
topology hiding. Parties flood the network: on receiving the broadcast message,
a party forwards it to all neighbors from which it was not previously received.
Indeed, this protocol reveals information; e.g., the round number in which a
party first receives the message corresponds directly to its distance from the
broadcaster. However, even for this simple protocol, the amount of information
revealed is limited. The leakage can be quantified precisely: each party learns
exactly the distance from the broadcaster of each of its neighbors,15 or “distance-
of-neighbors.” In particular, this includes the information of (a) direction of the
broadcaster (i.e., which neighbors are on a shortest path to the broadcaster),
and (b) distance to the broadcaster. Since the flooding protocol can be executed
unconditionally for any graph class G, it can only be some combination of this
leaked distance-of-neighbors information for which hiding requires cryptography.

Examining the lower bound of [4], we observe that it constitutes an example
where hiding the direction of the broadcaster from a given party necessitates
key agreement (KA). This is embodied via the class of two graphs G4-path =
{(A-B-C-D), (B-C-D-A)} on a path, where party C is unaware whether the
broadcasting party A lies to its left or right. Indeed, broadcaster direction is
central to their lower bound, where KA agents Alice and Bob emulate the THB
parties B and D, respectively, and jointly emulate C. Each flips a (private)
coin to decide whether to also emulate A on their corresponding side. The two
parties can detect cases where both (or neither) party decided to emulate A. In
the remaining cases both parties agree on which side the broadcaster appears:
this will serve as the secret common key bit.

At a high level, the security of this KA protocol relies on the fact that the
eavesdropper’s view is essentially that of party C—who, by topology hiding, can-
not distinguish the relative direction of A. Thus, one may naturally ask whether
hiding the direction to the broadcaster captures the essence of the cryptographic
power of THB.

15If the neighbor sends the message in the first round that the party learns it, then
its distance is one less of the party’s distance. If the neighbor sends after the party
learned it, then its distance equals the party’s distance. If the neighbor does not send,
then its distance is one more than the party’s distance.
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Our first result shows that the direction to the broadcaster is not the complete
answer. We present a class of graphs Goriented-5-path for which any constant-round
1-secure THB implies infinitely often key agreement,16 but for which the direction
to the broadcaster is always known. Specifically, we consider the class of 5-path
graphs where the broadcaster A is always on the left,17 i.e.,

Goriented-5-path =
{

(A-B-C-D-E), (A-E-B-C-D), (A-D-E-B-C), (A-C-D-E-B)
}
.

Because of this structure, the lower-bound techniques of Ball et al. [4] do not
apply. Proving a key-agreement implication for Goriented-5-path requires a new, more
subtle approach, which we discuss in Section 2. In particular, unlike [4], we must
leverage the fact that topology hiding holds for any choice of corrupted party. For
example, party C cannot distinguish between (A-B-C-D-E) and (A-E-B-C-D),
and party B cannot distinguish between (A-E-B-C-D) and (A-D-E-B-C).

Taking a broader view of this example, we observe that while the direction
of the broadcaster is public for Goriented-5-path, the information to be hidden cor-
responds directly to the distance of the given parties to the broadcaster. One
may thus once again wonder whether revealing both the direction and distance
to the broadcaster dictates unconditional THB feasibility.

Our second result reveals that the answer is even more intricate. We demon-
strate a class of graphs for which each party publicly knows both its direction and
distance to the broadcaster, but for which 1-THB still implies key agreement.

Specifically, we consider the class Gtriangle consisting of a triangle, with pos-
sibly one of its edges missing (see Figure 1). Interestingly, this is a very basic
communication pattern: if a party has two neighbors it does not know if its
neighbors are directly connected or not, but a party with one neighbor knows
the entire topology. Notably, direction and distance from the broadcaster are
both clearly identifiable to each party given just its neighbor set; the only in-
formation hidden from a party is its neighbor’s distance to the broadcaster. We
show that this is enough to imply KA (see Section 2 for details).

1

2

3 1

2

3 1

2

3

Fig. 1: The class Gtriangle.

To summarize, for each strict subset of the properties that are leaked by
the flooding protocol (namely, direction and/or distance to the broadcaster), we

16An infinitely often key agreement guarantees correctness and security for infinitely
many λ ∈ N (where λ stands for the security parameter).

17In particular, the “left/right” orientation can be deduced locally from each node’s
neighbor set.
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demonstrate a graph class for which hiding only these properties implies public-
key cryptographic assumptions. Complementarily, if all three properties (essen-
tially, just the distance-of-neighbors) are known then one can use the flooding
protocol to obtain THB information theoretically.

Theorem 1 (THB lower bounds, informal). We consider THB with 1 semi-
honest corruption.

– 1-secure THB for the graph class Goriented-5-path of 5-path graphs for which
the broadcasting party is always in the leftmost direction (see above) implies
infinitely often key agreement.

– 1-secure THB for the graph class Gtriangle (Figure 1), for which the broadcast-
ing party is always at a known distance and direction, implies key agreement.

In contrast, for any class G such that for every party the distance of each of its
neighbors to the broadcaster is fixed and known across all graphs, there exists an
unconditionally 1-secure THB protocol.

THAB: Key Agreement and Beyond. We next turn to topology-hiding anony-
mous broadcast (THAB). As mentioned above, any lower bound for THB is also
a lower bound for THAB; however, we show even stronger results for THAB.

The connection between anonymous communication and cryptographic hard-
ness was previously studied by Ishai et al. [13]. They showed that in a commu-
nication network that provides sender-anonymity (under relatively strong ad-
versarial observation), key agreement exists unconditionally; i.e., each pair of
parties within the system can agree on a secret key. Our setting is slightly differ-
ent, however, using the lower-bound technique from [4] a similar observation can
be made: sender-anonymous communication over a path of three nodes implies
the existence of standard Alice-Bob key agreement, where the eavesdropper can
see which party sends which message.

This clear-cut impossibility of information-theoretic 1-THAB (in fact, 1-
secure anonymous broadcast) on arbitrary incomplete networks stands in con-
trast to 1-THB, where the determination of when a graph class yields an im-
plication to key agreement was demonstrably complex. Concretely, consider the
following (singleton) class G{a-b-c}:

G{a-b-c} = {(A-B-C)} .

THB for this class is glaringly trivial (indeed, there is no information to hide be-
cause the topology is fixed); however, as discussed, 1-THAB on this class implies
key agreement. For completeness, in Section 5.1 we prove this implication as a
direct corollary of the key-agreement lower bound of Ball et al. [4], where the
“direction” of the broadcaster (either A or C) in this case is hidden from the
intermediate party B by anonymity.

At this moment, the reader may pause, ensnared in the underwhelming na-
ture of the above class G{a-b-c}. However, by a standard player-partitioning argu-
ment (“projecting” a larger graph down onto the 3-path), the above result yields
a much broader statement.

7



Proposition 1 (THAB lower bound 1, informal, [13, 4]). Let G be a class
of graphs that contains a graph with at least (t + 2) nodes that is not (t + 1)-
connected. Then t-secure THAB for G implies KA.

In our final lower-bound result, we demonstrate an even more extreme form
of separation between THB and THAB. We consider the graph class G2-vs-3 that
consists of all possible 2-path and 3-path graphs over three parties, i.e.,

G2-vs-3 = {(A-B), (A-C), (B-C), (A-B-C), (B-C-A), (C-A-B)} .

In this class, for example, if A is only connected to B, it does not know whether
B has a second neighbor or not. It is easy to see that 1-secure THB exists
unconditionally (by the flooding protocol); however, we show that 1-secure THAB
implies infinitely often oblivious transfer.18 We emphasize that as opposed to
other classes of graphs discussed thus far, the “hardness” of the class G2-vs-3 is
based on hiding the number of nodes participating in the protocol. We refer the
reader to Sections 2 and 5.2 for further details on the lower bound.

Overall, we obtain the following theorem.

Theorem 2 (THAB lower bound 2, informal). 1-secure THAB for G2-vs-3
implies infinitely often OT.

We remark that these results separate THB from THAB for very simple graph
classes, where THAB requires computational assumptions whereas unconditional
THB exists via the trivial flooding protocol. Later, in Section 1.1 we will show
a more interesting separation via the “butterfly” graph, where the existence of
information-theoretic THB itself is non-trivial.

Upper Bounds Before stating our results, we recall the state-of-the-art for
semi-honest THB and THAB with one corruption. Assuming oblivious transfer
(OT), 1-THAB can be obtained for all graphs following the construction ap-
proach of Moran et al. [18].19 Without assuming OT, the only previously known
nontrivial20 construction of THB or THAB is the information-theoretic 1-THAB
for the specific graph class of cycles on a known number of nodes in [4].

We consider three settings of upper bounds: (1) with information-theoretic
security, (2) assuming only key agreement, and (3) converting generically from
THB to THAB.

18An infinitely often OT protocol guarantees correctness and security for infinitely
many λ ∈ N (where λ stands for the security parameter).

19The result of [18] was limited to graphs of small diameter to allow an arbitrary
number of corruptions. With a single corruption the same construction can support all
graphs.

20THB exists trivially for any graph class in which each party’s neighborhood
uniquely identifies the graph topology.
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Information-theoretic security. First, we consider protocols for achieving 1-
THAB (and THB) in the information-theoretic setting, without cryptographic
assumptions. Recall that the lower bound in Proposition 1 above rules out
the possibility of 1-THAB for any graph class containing a graph that is not
2-connected. We show that conversely, if a class of graphs G contains only 2-
connected graphs, then 1-THAB for G is feasible.

The protocol’s communication grows polynomially in the size of the class G
and its computation grows polynomially in the size of G and exponentially in
the maximal degree of any G ∈ G. However, our results are meaningful despite
this caveat: First, the protocol is efficient when considering a constant number
of parties (or appropriate graph classes of polynomial size). Second, since the
protocol remains secure against computationally unbounded adversaries, it is
still meaningful to consider protocols that are inefficient in the class.

Theorem 3 (1-IT-THAB for 2-connected, informal). Let G be a class
containing only 2-connected graphs. Then, there exists a statistical information-
theoretic 1-THAB for G whose communication complexity is polynomial in the
size of G, and whose computation complexity is polynomial in the size of G and
exponential in the maximal degree of G.

Combining Proposition 1 and Theorem 3 gives a characterization for
information-theoretic 1-THAB: Namely, a protocol exists if and only if all graphs
in the class are 2-connected (with the exception of the trivial class containing
only the 2-path). For the case of 1-THB such dichotomy does not hold and,
as we show, there exist graph classes with 1-connected graphs that still admit
information-theoretic 1-THB protocols.

Remark 1 (1-IT-THB for Gbutterfly). Consider the 5-node, 1-connected butterfly
graph (Figure 2) and let Gbutterfly contain all permutations of the nodes on the
graph (where parties’ positions are permuted). In Section 6.2, we show that
although the simple flooding protocol does not directly hide topology, there
exists a (perfectly secure) information-theoretic 1-THB protocol for Gbutterfly.

Fig. 2: The butterfly graph.

Upper bounds from KA. Recall that from the lower bounds presented above (see
Section 1.1), key agreement is a necessary assumption for 1-THB and 1-THAB
for many classes of graphs. This begs the question of when key agreement is
also a sufficient assumption for 1-THB and 1-THAB. We show that assuming
key agreement there exist 1-secure THB for all graphs, and 1-secure THAB for
all graphs containing at least 3 nodes.
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Theorem 4 (1-THAB and 1-THB from KA, informal).

– Let G be a class consisting of graphs with at least three nodes. Assuming key
agreement, there exist 1-THAB for G.

– Let G be a class of graphs. Assuming key agreement, there exist 1-THB for G.

We note that in the first item of Theorem 4, removing the restriction of at
least three nodes would require bypassing black-box separation results, due to
Theorem 2 that asserts the necessity of (infinitely often) OT for the class G2-vs-3.
On the other hand, by [18], assuming OT there exists 1-THAB for all graphs,
essentially closing the gap in this regime.

THC dichotomy. Upon closer inspection, we observe that our upper bounds—
both the information-theoretic protocols for 2-connected graphs, as well as the
results from KA above—give something even stronger than 1-THAB: they give
topology-hiding secure message transmission, i.e., emulating pairwise secure
point-to-point channels. In this case, assuming that the number of parties is fixed
and known across all graphs, we can run the semi-honest “BGW” protocol [5],
which only requires pairwise secure channels and works for an honest majority.
Thus, together with our lower bounds, we arrive at the following dichotomy for
1-THC:

Corollary 1 (1-secure THC dichotomy, informal). Consider a class of
graphs G on n ≥ 3 nodes. Then, the following hold regarding existence of THC
for G secure against 1 semi-honest corruption:

– If all graphs G ∈ G are 2-connected, then there exists a statistically
information-theocratically secure, 1-THC protocol for G, whose communi-
cation is polynomial in the size of G and whose computation is polynomial
in the size of G and exponential in the maximal degree of G.

– If there exists G ∈ G that is not 2-connected, then KA is necessary and
sufficient for 1-secure THC for G.

Generically converting THB to THAB. Our results have demonstrated a num-
ber of nontrivial separations between THB and THAB, identifying classes of
t-connected graphs and computational assumptions which admit t-THB proto-
cols but provably cannot obtain t-THAB. This includes, for example, G{a-b-c}
and Gbutterfly for information theoretic vs. key agreement, as well as G2-vs-3 for
information theoretic vs. oblivious transfer.

Finally, we show that graph connectivity is, indeed, a critical property for
determining the relation between THB and THAB on a class of graphs. Specifi-
cally, we show that (t + 1)-connectivity is a sufficient condition for equivalence
of the two notions against t corruptions.

Theorem 5 (t-THB ⇒ t-THAB given (t+1)-connectivity, informal). Let
n ∈ N and let G be a class consisting of (t + 1)-connected graphs over n nodes.
If there exists t-THB for G then there exists t-THAB for G.

10



Our reduction builds upon the “Dining Cryptographers” approach for anony-
mous broadcast due to Chaum [8]. Recall in THAB there exists a unique broad-
caster who wishes to convey its input bit x ∈ {0, 1} to all parties without re-
vealing its identity (or the topology). To do so, each party first additively secret
shares its input—defined to be 0 for any non-broadcaster—across its neighbors,
locally sums all received shares to si ∈ {0, 1}, and then acts as broadcaster within
the underlying (non-anonymous) THB with input value si. After this phase, all
parties receive the vector of shares (s1, . . . , sn), which can be summed to yield
the original input x. It was shown by [8] that if the graph is (t+ 1)-vertex con-
nected (so as to ensure that the adversary cannot corrupt a vertex cut), then the
protocol is anonymous. We observe that the protocol further preserves the topol-
ogy hiding of the underlying THB protocol. Indeed, given (t + 1)-connectivity,
the vector of broadcasted shares (s1, . . . , sn) will be uniform conditioned on the
necessary sum, independent of the graph structure.

Summary and Characterization of Graphs with up to Four Nodes We
summarize our combined contributions in Table 1, together with relevant prior
results.

1-THB 1-THAB
sufficient necessary sufficient necessary

IT
2-connected (Thm 3)
Gbutterfly (Remark 1)
Gcycle [4]

– 2-connected (Thm 3) –

KA All graphs (Thm 4)
Gtriangle (Thm 1)
Goriented-5-path (Thm 1)
G4-path [4]

(Thm 4)
All graphs (≥ 3 nodes)

(Prop 1)
(≥ 3 nodes)
Not 2-connected

OT All graphs [18] – All graphs [18] G2-vs-3 (Thm 2)
Table 1: Summary of Upper and Lower Bound Results. Read as “[row label] is

necessary/sufficient for [column label].” E.g. the IT setting suffices to
construct 1-THAB for any 2-connected family of graphs, whereas KA
is needed to construct 1-THB for Gtriangle.

In addition, and as a demonstration of the power and applicability of the
techniques developed, in the full version of this work we provide a characteri-
zation of the feasibility of 1-THB and 1-THAB for all graph classes on up to 4
parties. The characterization uses a partition of the 4-node graphs into multiple
classes, each of which can be handled by a separate technique.

Organization of the Paper We proceed in Section 2 to provide an overview of
the core new techniques toward proving our main results. In Section 3 we provide
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the necessary definitions and preliminaries. In Section 4 and Section 5 we present
an abbreviated version of our THB and THAB lower bounds, respectively. And,
in Section 6 and Section 7 we include a short version of our information-theoretic
and KA-based upper bounds. We refer the reader to the full version of this paper
for detailed treatment of these results, as well as corollaries and implications to
characterization of 1-THB, 1-THAB, and 1-THC.

2 Technical Overview

We next highlight a selection of our new analysis and protocol-construction
techniques, described in Sections 2.1 to 2.4. We will describe two analysis tech-
niques that are used in our lower bounds: “phantom jump” and “artificial over-
extension.” In addition, we will describe two protocol-design techniques that are
used in our upper bounds: “censored brute force” and “dead-end channels.”

2.1 Analysis Technique: “Phantom Jump”

The “phantom jump” technique is a means for proving indistinguishability of
the transcript of messages sent across a given edge A-B in THB executions on
two different graphs, via a sequence of intermediate indistinguishability steps,
each appealing to THB security for a different graph pair. In applications, the
initial and final graphs will have a party “jump” from one side of the graph to
the other, which will be used within the key-agreement implication analysis.

This technique is used within some of our key-agreement lower bounds. We
focus here on a specific example for the class Gtriangle (of a triangle graph with
a potential edge missing). We point the reader to more elaborate examples on
4-node graph classes in the full version.

We start by recalling how a 1-THB protocol π for G4-path =
{(A-B-C-D), (B-C-D-A)} was used to construct key agreement in [4]. The idea
is for Alice to choose two long random strings r1 and r2 and send them to Bob
in the clear. Next, Alice and Bob continue in phases as follows:

– In each phase Alice and Bob locally toss coins xAlice and xBob, respectively.
– They proceed to run two executions of π in which Alice always emulates B

and C and Bob emulates D. In addition, if xAlice = 0 then Alice emulates A
(as a neighbor of B) broadcasting r1 in the first run; otherwise she emulates
A broadcasting r2 in the second run. Similarly, if xBob = 1 then Bob emulates
A (as a neighbor of D) broadcasting r1 in the first run; otherwise he emulates
A broadcasting r2 in the second run.

– If parties B and D output r1 in the first run and r2 in the second, Alice and
Bob output their bits xAlice and xBob, respectively; otherwise, they execute
another phase.

Clearly, if xAlice = xBob in some iteration then Alice and Bob will output the same
coin, and by the assumed security of π, the eavesdropper Eve will not be able
to learn who emulated A in the first run and who in the second. If xAlice 6= xBob,
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then in at least one of the runs nobody emulates the broadcaster A, so with
overwhelming probability Alice and Bob will detect this case.

We now show how to adjust this argument to Gtriangle. Constructing the KA
protocol is rather similar, where Alice always emulates B and Bob always em-
ulates C, and each party emulates the broadcaster A based on their local coins
xAlice and xBob (see Figure 3). Proving correctness follows exactly as in the ar-
gument from [4]; however, proving security is more involved. Indeed, in G4-path
the view of Eve corresponds to a partial view of the intermediate node C who
is never a neighbor of A, and so by the security of π, never learns its direction
to A. When considering Gtriangle, the view of Eve consists of the communication
between B and C, and one of them must be a neighbor of A.

This is where the new phantom-jump technique comes into play. As opposed
to [4], we do not construct a reduction from Eve to the security of the THB
protocol; rather, we use a direct indistinguishability argument. Notice that the
KA construction required the use of only two graphs (A-B-C) and (B-C-A).
The third graph (the triangle) is needed for the proof.

A

B

C A

B

C

Ind. B

A

B

C

Ind. C
A B C B C A

Ind. E

E E

Fig. 3: 1-THB on Gtriangle implies KA.

As depicted in Figure 3, the view of Eve consists of the communication be-
tween B and C. By THB security B cannot distinguish between the 3-path
(A-B-C) and the complete triangle; in particular, the distribution of the mes-
sages on the channel between B and C is indistinguishable in both cases. Simi-
larly, by THB security C cannot distinguish between the 3-path (B-C-A) and the
complete triangle; in particular, the distribution of the messages on the channel
between B and C is indistinguishable in both cases. By a simple hybrid argu-
ment it follows that the messages between B and C are indistinguishable when
communicating in (A-B-C) and when communicating in (B-C-A). It follows that
the distinguishing advantage of Eve is negligible.

2.2 Analysis Technique: “Artificial Over-Extension”

The artificial over-extension technique is used for proving two of our lower
bounds. First, Theorem 1 where 1-THB for Goriented-5-path is used to construct
infinitely often KA (see also Section 4.1); and second, Theorem 2 where 1-THAB
for G2-vs-3 is used to construct infinitely often OT (see Section 5.2). In the fol-
lowing, we focus on the latter.
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Recall that in the class G2-vs-3 a party (say A) that has a single neighbor (say
B) does not know whether B has another neighbor C or not. This uncertainty is
the source of the cryptographic hardness we present; indeed, if the parties know
that an honest majority cannot be assumed (i.e., there are only two parties)
then 1-THAB is trivial, whereas if an honest majority can be assumed (i.e., there
are three parties) then 1-THAB exists assuming KA (by Theorem 4). We also
note that without anonymity, 1-THB trivially exists in G2-vs-3 (via the flooding
protocol).

We start with an intermediate goal, that of constructing oblivious transfer
from a two-round 1-THAB protocol π for the graph class G2-vs-3,21 and later ex-
plain how the novel “artificial over-extension” technique allows us to extend this
construction to arbitrary constant-round protocols. Note that using this tech-
nique we can only construct infinitely often OT, and extending the implication
to a full-blown OT is left as an interesting open question.

OT from two-round 1-THAB. Given a two-round 1-THAB protocol π we con-
struct a secure two-party protocol for Boolean AND (which in turn implies
OT [14]).

In the protocol, Alice and Bob will emulate an execution of the 1-THAB
protocol on a path, where each extends the length of the path (by emulating an
extra party) if their input is 1. More concretely, Alice simulates a single node B
if her input is 0, and two nodes A-B if her input is 1. Similarly, Bob simulates
a single node C if his input is 0 and two nodes C-A if his input is 1 (see Figure
4). Next, Alice chooses a message m R←{0, 1}λ at random, sends it to Bob in the
clear, and initiates an execution of π on message m on the graph with her left-
most node (either B or A) as broadcaster. At the conclusion of π, Bob identifies
whether his right-most emulated party (either C or A) correctly outputs m. If
so, then Bob outputs 0; if not, he outputs 1.

Alice Bob

If x = 0 B

If x = 1 BA

If y = 0C

If y = 1C A

Fig. 4: Boolean AND from two-round 1-THAB for {B-C,A-B-C,B-C-A}

We show that this protocol securely computes AND of Alice and Bob’s inputs.

21In fact, for this step we will only need for the smaller graph class
{B-C,A-B-C,B-C-A} ⊂ G2-vs-3.
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– For security, we exploit the fact that the only case where there is something
to hide (namely, if a party holds input 0) is where the respective party has
control over just a single node in π. Security therefore follows from the fact
that π is a THAB protocol with security against one corruption. For example,
the views of a corrupt Alice emulating B within executions over graphs B-C
(Bob has input 0) and B-C-A (Bob has input 1) are indistinguishable.
Note here that for security it is crucial that π is an anonymous broadcast
protocol, because in case x = 0, Alice broadcasts from node B and in case
x = 1 from node A. (In fact, as noted above, 1-THB can be achieved trivially
on G2-vs-3.)

– For correctness, first note that when at least one party has input 0, the cor-
responding graph is an element of {B-C,A-B-C,B-C-A} ⊂ G2-vs-3, in which
case proper delivery of m to Bob’s right-most node is guaranteed by cor-
rectness of π. On the other hand, when x ∧ y = 1 (i.e., both Alice and Bob
emulate node A) the parties effectively emulate π over an “invalid” length-4
path A-B-C-A. While behavior of π within such execution is unclear, since
π runs in only 2 rounds, the message m simply cannot reach the right-most
node emulated by Bob at distance 3. Thus, Bob will correctly output 1.

Infinitely often OT from constant-round 1-THAB. Note that correctness of the
construction above crucially relies on efficiently detecting an execution of π on
the graph A-B-C-A, leveraging its insufficient round complexity. However, this
argument is no longer guaranteed when π completes in more than two rounds.
This is where the “artificial over-extension” technique comes into play.

The insight is that either an execution of π on graph A-B-C-A can indeed be
efficiently detected, in which case the protocol above extends (and we are done),
or π actually provides a stronger form of topology hiding that we can further
leverage. Namely, if neither Alice nor Bob can identify when π is executed on
A-B-C-A as opposed to a legal graph, then in particular π provides 1-THAB for
the larger graph class G2-vs-3

′ ..= G2-vs-3 ∪ {A-B-C-A}.
In this case, we can take a similar approach to above, but with the graphs

{A-B,C-A-B,A-B-C-A} ⊂ G2-vs-3
′, with Alice emulating A or C-A, and Bob em-

ulating B or B-C-A, and hope that π identifiably breaks down on the “over-
extended” path C-A-B-C-A of length 5. If not, this argument repeats, until—via
this artificial over-extension technique—ultimately we reach a graph class G for
which:

– π is 1-THAB on G, including {Y-Z,X-Y-Z,Y-Z-P } ⊂ G
– π is not 1-THAB on G ∪ {X-Y-Z-P },

where X,Y,Z ∈ {A,B,C}, and P is a path of length upper-bounded by the round
complexity of π. Once we do, then the original secure-AND protocol approach
will succeed, modulo some differences described below, with Alice emulating Y
or X-Y, and Bob emulating Z or Z-P .

To argue that eventually we find a path X-Y-Z-P for which π identifiably
breaks down, we again appeal to its bounded round complexity, i.e., π must
fail identifiably (with probability 1) once the length of the path exceeds the
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round complexity. The limitation of constant rounds is a subtle side effect of the
corresponding hybrid argument, to argue that there must be some step where
we jump sufficiently from indistinguishable to efficiently identifiable.

Consider the resulting secure-AND protocol, once an appropriate X,Y,Z,P
are found. The only modification from the simpler two-round version is how to
detect the (over-extended) case x ∧ y = 1. When π was two rounds, identify-
ing this event was immediate: Bob’s right-most party simply will not receive
the delivered message. Here, this is not necessarily the case, as the identifiable
“breakdown” of π may occur before the length of X-Y-Z-P exceeds π’s round
complexity. Thus, instead, the parties will run the distinguisher that—roughly
speaking—exists from the fact that π is not 1-THAB on G ∪ {X-Y-Z-P }. This is
the reason why our final protocol guarantees correctness only for infinitely many
λ ∈ N: All we can say is that either the protocol π is 1-THAB on G ∪{X-Y-Z-P }
and we can continue with the extension argument, or π is not 1-THAB, i.e., there
exists a distinguisher that efficiently detects the “too-long” path X-Y-Z-P with
noticeable advantage for infinitely many λ ∈ N. Finally, in order to boost cor-
rectness towards negligible correctness error (for infinitely many λ), Alice and
Bob simply run the protocol π and the distinguisher sufficiently many times,
each time on input of a fresh message m, and take a corresponding majority
vote.

2.3 Protocol Design: “Censored Brute Force”

This technique enables constructing unconditionally secure pairwise channels
between each pair of parties which further guarantees sender anonymity. Such
anonymous and private channels are used for proving Theorem 3 and Corol-
lary 1, by constructing 1-THAB and 1-THC with information-theoretic security
for any class G for which all graphs are 2-connected (see Section 6.1 for more
details). Recall that the communication complexity of the resulting protocols is
polynomial in the size of G (which could be superpolynomial) and the compu-
tation complexity is polynomial in the size of G and exponential in the maximal
degree of G.

The high-level idea is twofold: For any single 2-connected graph G, we show
how to unconditionally perform sender-anonymous point-to-point communica-
tion on G with an ability for any party to (anonymously) “censor” the communi-
cation, i.e., yielding delivery of random garbage instead of the intended message.
Then, for a given class of 2-connected graphs G, the parties will simultaneously
execute (in parallel) a separate anonymous-communication protocol for every
graph G ∈ G; for each such G-execution, a party will censor the execution if its
true neighborhood is inconsistent with its neighborhood in G. As such, the only
protocol execution that remains uncensored will be the one corresponding to the
correct execution graph G (and the identity of which G this corresponds to can
be made hidden to the receiving party). We elaborate on these two aims below.

Communicating anonymously in a 2-connected graph. More concretely, suppose
we have a single 2-connected graph G on vertex set [n], and fix some designated
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source and target nodes σ 6= τ ∈ [n]. Let Hστ denote an arbitrary στ -orientation
of G,22 i.e., a directed acyclic graph with unique sink τ and unique source σ
formed by assigning a direction to each edge in G. Moreover, label all nodes
1, 2, . . . , n according to a topologically consistent ordering of Hστ (beginning
with σ and ending at τ). We consider the numbering/orientation of any graph G
to be a public parameter, computed according to some deterministic procedure
(see full version).

Now suppose node u wishes to send a message m to the target node τ anony-
mously and securely on the graph G. In the first round, the source σ (i.e., the
node labeled 1) prepares additive shares of 0 (or of m if σ = u) for each of its
outgoing edges in Hστ . In round 2, the source σ sends the corresponding share
to its neighbor node labeled 2, who then prepares secret shares of what it re-
ceived (+m if it is u) for each outgoing edge. More generally, in round i < n
all nodes with an edge to the ith node send their shares to the ith node. The
ith node, having received shares on all incoming edges, then sums up what it
receives (adds m if it is u) and prepares additive shares of the result for each of
its outgoing edges. In round n, all nodes with edges to τ (the target node) send
their shares to τ and τ outputs their summation.

Correctness follows from the homomorphic properties of additive secret shar-
ing. To see why this protocol is secure (namely, that it hides u and m), note that
the 2-connectivity of G implies that there are at least 2 vertex-disjoint στ -paths
inHστ . Thus, the messages any intermediate party (corresponding to 2, . . . , n−1)
receives are uniformly random because that node is in some sense always missing
at least one share (corresponding to a disjoint στ -path); the source σ does not
receive anything at all, and the view of the target τ is simply a random sharing
of its output m.

This protocol enjoys some other useful properties. Most notably, any non-sink
node can covertly “censor” communication by simply preparing (and sending)
shares of a uniformly random message, instead of preparing shares corresponding
to what they received (as per the protocol). The view of every other party is
identically distributed, with the exception of τ who now receives secret shares
of a uniformly random message in the final round.

Compiling to hide topology. Now, let G be a class of 2-connected graphs on
vertex set [n]. Loosely speaking, the parties will simulate the above protocol for
every possible graph in G simultaneously. Each node will covertly censor every
protocol corresponding to a graph that is not locally consistent with their local
neighborhood (sending random messages at the appropriate times). As a result,
exactly one protocol (corresponding to the “real” graph) will give the correct
output message and all others will give uniformly random output.

To be slightly more concrete, all nodes will execute the protocol above for
each graph in the class in parallel. To keep track of which message is which, for
every node but τ we will label the messages with the graph/protocol that the

22The standard notation in the literature is st-orientation; to avoid confusion with
the notation t that stands for the corruption threshold, we use στ -orientation instead.
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message corresponds to. If an edge is missing from the real graph, but present in
a graph corresponding to one of the simulated protocols, the corresponding mes-
sage cannot be sent. However, the receiving node knows not to expect a message
either. From this and the uniformly random nature of non-terminal messages in
the above protocol, nothing is leaked locally by labeling the simulations. How-
ever, sending labeled messages to τ would clearly identify the “real” topology. So
instead, all parties will send all final protocol messages in randomly permuted
order. To enable τ identifying the real output, the sender will append a long
checksum to the message. The target τ will try all message combinations (this is
the reason for the exponential dependency in the maximal degree) and output
the unique one with a correct checksum (or abort if more than one message has
a valid checksum).

2.4 Protocol Design Technique: “Dead-End Channels”

The Dead-End Channels technique is used to obtain 1-THAB for all graphs of at
least 3 nodes (and 1-THB for all graphs), assuming existence of key agreement.
Recall that before the present work, such results were only known assuming
oblivious transfer [18].

The high-level idea of our 1-THAB protocol, as in Moran et al. [18], is to
broadcast the message via flooding, but in a way that hides from the parties
at which round they received the broadcast message. This can be achieved by
passing the message between virtual parties, each consisting of two real parties
that hold additive secret shares of the message (depicted, e.g., as purple bars for
each neighboring pair of parties below). Only in the final round will the parties
exchange their secret shares and recover the message.

3 421

b1,2 b3,4

b3,2

b4,3

b2,3

b2,1

The challenge thus becomes passing the messages between virtual parties.
In [18] this is solved by using oblivious transfer (OT) to run an MPC protocol
realizing the virtual party, and allowing every adjacent pair of virtual parties to
securely compute the OR of their messages.

In our setting, we do not have the ability to perform secure computations
pairwise between parties without OT. Instead, we leverage the fact that given at
least three nodes we are guaranteed an honest majority, and can therefore (once
the parties establish secure channels using the key agreement protocol) build on
techniques from information-theoretic secure computation to appropriately pass
along the message.

However, this itself is not so straightforward. For example, in the image
above, the neighboring parties 2-3-4 would wish to jointly emulate a three-party
secure computation to perform the secure transfer from 2-3 to 3-4. But, the issue
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is that parties cannot reveal whether they truly have neighbors with which to
jointly compute: for example, party 2 above must then emulate a nonexistent
neighbor 1 to hide its true degree. Thus grouping parties in three, including
possibly a simulated neighbor, would allow the adversary to gain control over
a majority. (On the other hand, building on secure computation including four
our more neighbored parties, the same party could appear several times in the
protocol and therefore potentially learn about the connectivity of its neighbors.)

Our approach builds on the following idea: We will give one party within
each group of three the role of a dealer to deal OT correlations, which can be
used to establish a secure OT channel between two other parties. This alone
is not sufficient, as one of the parties could be simulated by the dealer (in the
case that the dealer has degree one), and therefore allows the dealer to gain full
control over the OT channel, and in particular learn the honest parties’ inputs.
To prevent this, we observe that — again using OT correlations — one can
establish dead-end channels (i.e., information sent via such a channel cannot be
read by anyone apart from the sender) if and only if the receiver is a simulated
party. Therefore, even if the dealer simulates one of the parties, it does not learn
anything about the honest parties’ inputs. Note that it is crucial that dead-end
channels are indistinguishable from secure channels from the view of the sender.
Further, a key observation is that using OT correlations to establish dead-end
channels does not leak anything about the topology, even if the dealer of the OT
correlations has degree one. This is the case, because the only thing the dealer
could potentially learn from the other party is whether its degree is one — but if
the dealer has degree one it already knows that the degree of its neighbor must
be at least two (as we are guaranteed a connected graph with a strict honest
majority).

3 Preliminaries

Notations. For n ∈ N let [n] = {1, · · · , n}. In our protocols we sometimes denote
by B an upper bound on the number of participating parties, by n the number
of actually participating parties, and by t an upper bound on the number of
corrupted parties. The security parameter is denoted by λ.

Graph notations and properties. A graph G = (V,E) is a set V of vertices and a
set E of edges, each of which is an unordered pair {v, w} of distinct vertices. A
graph is directed if its edges are instead ordered pairs (v, w) of distinct vertices.
An oriented graph is a directed graph having no symmetric pair of directed edges,
and an orientation of an undirected graph is an assignation of a direction to each
of its edges so as to make it oriented. A graph is k-connected if it has more than
k vertices and remains connected whenever fewer than k vertices are removed.
A graph class G is k-connected if every graph G ∈ G is k-connected. Throughout
this paper we only consider connected graphs, even if we do not systematically
make this explicit. The (open) neighborhood of a vertex v in an undirected graph
G, denoted NG(v), is the set of vertices sharing an edge with v in G. The closed
neighborhood of v in G is in turn defined by NG[v] := NG(v) ∪ {v}.
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UC framework. We work in the UC framework of Canetti [6]. Unless stated
otherwise, we will consider computationally unbounded, static, and semi-honest
adversaries and environments.

Topology-hiding computation (THC). We recall the definition of topology-hiding
computation from [18, 4]. The real-world protocol is defined in a model where
all communication is transmitted via the functionality FGgraph (described in Fig-
ure 5). The functionality is parametrized by a family of graphs G, representing
all possible network topologies (aka communication graphs) that the protocol
supports. We implicitly assume that every node in a graph is associated with a
specific party identifier, pid. To simplify the notation, we will consider that Pv
in the protocol is associated with node v in the graph.

Initially, before the protocol begins, FGgraph receives the network communication
graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides
to each party Pv with v ∈ V its local neighbor-set. Next, during the protocol’s
execution, whenever party Pv wishes to send a message m to party Pw, it sends
(v, w,m) to the functionality; the functionality verifies that the edge (v, w) is
indeed in the graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of
participants is known to all and need not be kept hidden. In this case, defining the
ideal functionality and constructing protocols becomes a simpler task. However,
if there exist graphs in G that contain a different number of nodes, then the model
must support functionalities and protocols that only know an upper bound B on
the number of participants. In the latter case, the actual number of participating
parties n must be kept hidden.

Given a class of graphs G with an upper bound B on the number of parties,
we define a protocol π with respect to G as a set of B ppt interactive Turing
machines (ITMs) (P1, . . . , PB) (the parties), where any subset of them may be
activated with (potentially empty) inputs. Only the parties that have been acti-
vated participate in the protocol, send messages to one another (via FGgraph), and
produce output.

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every corrupted (dummy) party should learn its neighbor-set. Note that the
functionality F can be completely agnostic about the actual graph that is used,
and even about the family G. To augment F in a generic way, we define the
wrapper-functionality WGgraph-info(F), that runs internally a copy of the function-
ality F. The wrapper WGgraph-info(·) acts as a shell that is responsible to provide
the relevant leakage to the corrupted parties; the original functionality F is the
core that is responsible for the actual ideal computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph
party Pgraph, makes sure that G ∈ G, and sends a special initialization message
containing G to F. (If the functionality F does not depend on the communica-
tion graph, it can ignore this message.) The wrapper then proceeds to process
messages as follows: Upon receiving an initialization message from a party Pv
responds with its neighbor set NG(v) (just like FGgraph). All other input messages
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The functionality FG
graph

The functionality FG
graph is parametrized by a family of graphs G; let B denote the

maximal number of nodes in G ∈ G . The functionality proceeds with a special graph
party Pgraph and with a subset of the parties P1, . . . , PB (to be defined by the graph
received from Pgraph) as follows.

Initialization Phase:
Input: FG

graph waits to receive the graph G = (V,E) from Pgraph. If G /∈ G, abort.
Output: Upon receiving an initialization message from Pv, verify that v ∈ V ,

and if so send NG(v) to Pv.
Communication Phase:

Input: FG
graph receives from a party Pv a destination/data pair (w,m) where

w ∈ NG(v) and m is the message Pv wants to send to Pw. (If v, w /∈ V , or
if w is not a neighbor of v, FG

graph ignores this input.)
Output: FG

graph gives output (v,m) to Pw indicating that Pv sent the message
m to Pw.

Fig. 5: The communication graph functionality

from a party Pv are forwarded to F and every message from F to a party Pv is
delivered to its recipient.

Note that formally, the set of all possible parties V ∗ is fixed in advance. To
represent a graph G′ = (V ′, E′) where V ′ ⊂ V ∗ is a subset of the parties, we use
the graph G = (V ∗, E′), where all vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating a semi-honest adversary corrupting t parties if π securely realizes
WGgraph-info(F) in the FGgraph-hybrid model tolerating a semi-honest adversary cor-
rupting t parties.

Broadcast and anonymous broadcast. In this work we will focus on topology-
hiding computation of two central functionalities. The first is the broadcast func-
tionality (see Figure 6), where a designated and publicly known party, named the
broadcaster, starts with an input value m. Our broadcast functionality guaran-
tees that every party that is connected to the broadcaster in the communication
graph receives the message m as output. In this paper, we assume the com-
munication graphs are always connected. However, the broadcaster may not be
participating, in which case it is represented as a degree-0 node in the com-
munication graph (and all the participating nodes are in a separate connected
component.)

Parties that are not connected to the broadcaster receive a message that is
supplied by the adversary (we can consider stronger versions of broadcast, but
this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).
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The functionality Fbc(Pi)

The broadcast functionality Fbc(Pi) is parametrized by the broadcaster Pi and pro-
ceeds as follows.

Initialization: The functionality receives the communication graph G from the
wrapper Wgraph-info.

Input: Record the input message m ∈ {0, 1} sent by the broadcaster Pi.
Output: Send the outputm to every party that is in the same connected component

as Pi in G. For every other party in G, the output delivered to that party is
supplied by the adversary.

Fig. 6: The broadcast functionality

Definition 2 (t-THB). Let G be a family of graphs and let t be an integer.
A protocol π is a t-THB protocol with respect to G if π(Pv) securely realizes
Fbc(Pv) in a topology-hiding manner with respect to G, for every Pv, tolerating
a semi-honest adversary corrupting t parties.

The second is the anonymous-broadcast functionality (see Figure 7). This
functionality is similar to broadcast with the exception that the broadcaster is
not known and its identity is kept hidden even after the computation completes.
Namely, the environment will activate exactly one of the parties with an input
value, informing this party that it is the broadcaster. We denote the anonymous
broadcast functionality Fanon-bc.

The functionality Fanon-bc

The anonymous-broadcast functionality Fanon-bc proceeds as follows.

Initialization: The functionality receives the communication graph G from the
wrapper Wgraph-info.

Input: Upon receiving an input message m ∈ {0, 1} from one of the parties Pi,
record it.

Output: If exactly one input message m from party Pi was received, Send the
output m to every party that is in the same connected component as Pi in G.
For every other party in G, the output delivered to that party is supplied by
the adversary.
If more than one input was received, send G and all received inputs to the
adversary, and for every party inG, the output delivered to that party is supplied
by the adversary (i.e., there is no security guarantee if more than one input was
received.)

Fig. 7: The anonymous-broadcast functionality

Definition 3 (t-THAB). Let G be a family of graphs and let t be an integer. A
protocol π is a t-THAB protocol with respect to G if π securely realizes Fanon-bc in
a topology-hiding manner with respect to G, tolerating a semi-honest adversary
corrupting t parties.
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4 THB Lower Bounds

In this section we demonstrate that achieving broadcast while hiding certain
graph properties necessitates cryptographic assumptions.

4.1 Hiding Distance Requires io-KA (The Oriented 5-Path)

In this section, we show that hiding the distance from the broadcaster, in con-
stant rounds, requires infinitely-often Key Agreement (io-KA). In particular, we
will show that any constant-round protocol for the class Goriented-5-path (Figure 8),
implies io-KA.

1 2 3 4 5

1 3 4 5 2

1 4 5 2 3

1 5 2 3 4

Fig. 8: The class Goriented-5-path of oriented paths, rooted in P1. Communication
is bidirectional, arrows simply indicate that nodes can deduce the broad-
caster’s direction.

In this class the nodes 2 , 3 , 4 , 5 always know the direction of the broad-
caster, 1 (it’s in the direction of their lowest-valued neighbor, mod 5), but
cannot distinguish (from their local neighborhood) whether they are distance
2 or 3 from the broadcaster. E.g. 3 cannot distinguish between 1 - 2 - 3 - 4 - 5
and 1 - 5 - 2 - 3 - 4 , as in both cases its local neighborhood is 2 - 3 - 4 . Note that
if just distance is leaked to this class, the trivial flooding protocol is secure.

Intriguingly, the resulting key agreement construction is not fully-black-box,
nor is it even explicit. Further, our result critically requires the Goriented-5-path-
THB to be efficient in round complexity. We remark that such a limitation is in-
herent, as we demonstrate that Goriented-5-path unconditionally admits an ε-secure
topology-hiding broadcast protocol that works in O(1/ε) rounds, for any ε > 0.23

In contrast, the key agreement construction of Section 4.2 is fully black-box and
rules out the existence of such an upper bound for the class Gtriangle. It remains
open whether an ε-secure Goriented-5-path-THB in < 1/ε rounds requires io-KA, or
more generally whether negligible security in polynomial rounds requires io-KA.

Theorem 6. If there exists a constant-round 1-THB protocol for the class
Goriented-5-path, then infinitely-often key-agreement also exists.

23In fact, the upper bound holds for a large body of graph classes, where only
distance need be hidden.
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The proof introduces an argument called ‘artificial over-extension’ (Sec-
tion 2) which involves using the 1-THB on longer and longer graphs (outside
of the scope of its correctness and security guarantees) until the protocol breaks
in an identifiable way. Details are deferred to the full version of this paper.

4.2 Hiding Neighbor Distances Requires KA (The Triangle)

Consider the class Gtriangle = {G0
tr, G

1
tr, G

2
tr} as represented in Figure 9, which we

(abusively) call ‘the Triangle’. The players are P1, P2, P3 with the broadcaster
always being P1; P2 and P3 are connected, and P2 and/or P3 is connected to P1.

2

1

3

G0
tr

2

1

3

G1
tr

2

1

3

G2
tr

Fig. 9: The class Gtriangle.

The secret of the topology can be summarized as follows: if one of the two
non-broadcasting parties P2 or P3 is connected to the broadcaster, it does not
know if the other is as well. Note that preserving the secret of the topology
of Gtriangle can also be reformulated as ‘hiding the neighbor distances’ from the
parties. Indeed, for P2 (resp. P3) knowing the topology means knowing if P3
(resp. P2) is at distance one or two from the broadcaster.

Theorem 7 (Broadcast on ‘The Triangle’ requires KA). If there exists a
1-THB(1) protocol for the class Gtriangle then there exists a key-agreement protocol.

In order to prove this theorem, we explicitly construct a key-agreement
scheme from a 1-THB(1) protocol π on Gtriangle. The construction of this KA
protocol follows very closely the proof of Theorem 3.1 (and the associated Pro-
tocol 3.2) in Ball et al. [4], but we use a novel technique (the phantom jump
argument to reduce the security of the key-agreement scheme to the topology-
hiding properties of π. See description in Section 2.1; the details of the proof are
deferred to the full version of this paper.

5 THAB Lower Bounds

5.1 Low Vertex Connectivity Requires KA

In this section we show how t-THAB on a class which contains even a single
graph with at least t+2 vertices and which is not (t+1)-connected implies Key-
Agreement. It should be noted that this is a relatively weak result on its own,
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as testified by the fact that even non topology-hiding anonymous broadcast on
such a class already implies KA, but we present it here for completeness’ sake
and because it matches the upper bound of Theorem 11.

Proposition 2. t-THAB on a class containing a graph with at least (t + 2)
vertices which is not (t+ 1)-vertex-connected implies KA.

The result is similar in spirit to that of Ishai et al. [13]—who showed how
anonymity can be leveraged to obtain privacy—. We show it using techniques
from [4] however, which are more directly applicable as their setting is the same
as ours. The proof is deferred to the full version of this paper.

5.2 Uncertain Honest Majority Requires io-OT (The 2-vs-3 Paths)

In the previous section we showed that, for a large number of graph classes, key-
agreement is necessary to achieve 1-THAB. A natural follow-up question is to ask
whether key agreement is sufficient to achieve 1-THAB on all graphs or not. We
answer this question negatively by showing that constant-round 1-THAB on the
class of paths of length two and three implies infinitely often oblivious transfer.

This is similar to the result of Ball et al. [3], who showed no honest majority
can imply oblivious transfer in the 2-corruption setting. Note though that our
result requires inherently different techniques, as in the one-corruption setting
there exists only one graph with no honest majority, namely the path of length 2.
1-THAB on this graph only is trivial, as the only party that is not the broadcaster
knows that the other party must be the broadcaster. But, adding the path of
length 3 (where in fact there is always a honest majority), we can prove an
implication to infinitely-often oblivious transfer (io-OT). From a certain point
of view, we show that one cannot hide how far information travels, unless always
guaranteed an honest majority.

Theorem 8. Let π be a constant-round 1-THAB protocol for G2-vs-3. Then, there
exists a uniform infinitely-often OT protocol secure in the presence of a semi-
honest adversary.

In order to prove this theorem, we show that a constant-round 1-THAB for
G2-vs-3 can be used to build a secure two-party infinitely often AND function-
ality, which in turn implies infinitely often OT. The proof closely follows that
of Theorem 6, which introduced the “artificial over-extension” technique, and
is described in Section 2.2. The details are deferred to the full version of this
paper.

6 Information-Theoretic Upper Bounds

In this section, we present our information-theoretic constructions: in Section 6.1,
1-IT-THAB for 2-connected graphs, and in Section 6.2, 1-IT-THB for the 1-
connected butterfly graph.
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6.1 2-Connectivity is Sufficient for 1-IT-THAB

On an intuitive level, (t+ 1)-vertex-connectivity could be a sufficient condition
to perform t-IT-THAB since messages exchanged between distant parties in the
graph can be secret-shared among t+ 1 vertex-disjoint paths. This way, privacy
of communication can be ensured (since, with only t corruptions, an adversary
cannot recover all the shares). The core challenge, however, is how to have the
parties route message shares consistently on general, unstructured graphs, in a
topology-hiding fashion (in particular, message routing can only be done locally).
We prove this intuition to be true for t = 1, and provide a way for parties to
route secret-shares in 2-connected graphs.

Theorem 9. Let n ∈ N, let G be a class of 2-connected graphs of vertex set size
at most n, let dmax is the maximal degree of any graph in G, and let δ > 0. Then,
there exists a protocol that securely realizes Fanon-bc with security δ in a topology-
hiding manner with respect to G, tolerating a single semi-honest corruption.

Moreover, the protocol completes within n rounds with total communication
complexity O(n2dmax·|G|·(`+log(n/δ)+dmax·log |G|)) and computation complexity
O(|G|dmax) per node.

The proof revolves around a technique we call “censored brute-force” (see
Section 2.3). Full details are deferred to the full version of this paper.

6.2 2-Connectivity is Not Necessary for 1-IT-THB (Butterfly Graph)

Section 5.2 shows a separation between 1-THAB and 1-THB, with the class
G2-vs-3: 1-THAB implies infinitely often OT, yet 1-THB is possible information-
theoretically by flooding. In order to understand if the separation is really mean-
ingful or due to an edge case of the definition of THB, we ask whether there is a
class which separates the two functionalities and for which 1-THB is not trivial
(i.e., cannot be achieved by simple flooding). To this end, we prove there exist
graph classes on which 1-IT-THAB is impossible and flooding is not topology-
hiding, but there still exist 1-IT-THB. One such class is the family of butterfly
graphs (Figure 10), on which 1-IT-THAB is impossible by Proposition 2.

3

41

52

Fig. 10: The class of butterfly graphs consists of all possible permutations of the
graph depicted above with nodes in {1, 2, 3, 4, 5}.
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Theorem 10 (IT-THB on butterfly). There exists a 1-IT-THB protocol with
respect to Gbutterfly with perfect security.

What makes this problem non-trivial is that the center node cannot learn
which of its neighbors are connected, while the other nodes cannot learn which
node is the center node. We present an information-theoretic protocol which runs
in two phases. In the first, the broadcaster sends the message to all its neighbors
which ensures the center node gets hold of it. In the second phase, the center
node broadcasts the message in parallel on a bunch of subgraphs. Each of these
is the graph induced by the center and any other two parties. Note that each
of these subgraphs is either a triangle or a 3-path, much like in ‘the Triangle’,
described in Section 6.1. Crucially, we ensure the center node does not learn
which of them are triangles and which are 3-paths, while also preventing the
other parties learning the identity of the center node. Now, every neighbor of
the center—i.e., every party—knows the broadcast bit. The protocol is detailed
in the full version of the paper.

7 Key-Agreement Upper Bounds

We show that key-agreement is sufficient to achieve 1-THAB on all graphs with at
least 3 nodes—in other words, on all graphs where we are guaranteed an honest
majority. As shown in Section 5.2 this is the best we can hope to achieve for
general graph classes. This result can then be extended to 1-THB for all graphs.

Theorem 11 (KA is sufficient for 1-THAB on all graphs of size at least
3). If there exists a key-agreement protocol, there exists a 1-THAB protocol on
the class of all graphs with at least 3 and at most B vertices.

Based on [18], the idea is to broadcast the message via flooding, but in a
way that hides from the parties at which round they received the broadcast
message. We leverage the fact there is a guaranteed honest local majority nearly
everywhere in the network to run a protocol between locally simulated virtual
parties.24 The weakened assumption when compared to [18] (KA instead OT)
means we have to take extra steps to run secure protocols locally; to that effect
we introduce the trick of ‘dead-end channels’. The details of this construction
are deferred to the full version of this paper.

Theorem 12 (KA is sufficient for 1-THB on all graphs). If there exists a
key-agreement protocol, there exists a 1-THB protocol on the class of all graphs
with at most B vertices.

The proof of Theorem 12 follows almost immediately from that of Theo-
rem 11, and only involves introducing a small step to handle the case of size-2
networks. Again, it is left to the full version.

24In fact, we critically exploit the fact that if a party has a single neighbor (and
thus no guaranteed local honest majority), she knows that neighbor’s neighborhood is
majority honest.
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