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Abstract

Designing secure protocols in the Universal Composability (UC) framework confers many
advantages. In particular, it allows the protocols to be securely used as building blocks in more
complex protocols, and assists in understanding their security properties. Unfortunately, most
existing models in which universally composable computation is possible (for useful functionali-
ties) require a trusted setup stage. Recently, Katz [Eurocrypt ’07] proposed an alternative to the
trusted setup assumption: tamper-proof hardware. Instead of trusting a third party to correctly
generate the setup information, each party can create its own hardware tokens, which it sends
to the other parties. Each party is only required to trust that its own tokens are tamper-proof.

Katz designed a UC commitment protocol that requires both parties to generate hardware
tokens. In addition, his protocol relies on a specific number-theoretic assumption. In this
paper, we construct UC commitment protocols for “David” and “Goliath”: we only require
a single party (Goliath) to be capable of generating tokens. We construct a version of the
protocol that is secure for computationally unbounded parties, and a more efficient version that
makes computational assumptions only about David (we require only the existence of a one-way
function). Our protocols are simple enough to be performed by hand on David’s side.

These properties may allow such protocols to be used in situations which are inherently
asymmetric in real-life, especially those involving individuals versus large organizations. Classic
examples include voting protocols (voters versus “the government”) and protocols involving
private medical data (patients versus insurance-agencies or hospitals).
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1 Introduction

Designing secure protocols that run in complex environments, such as those typically found in real-
world applications, is a very challenging task. The design must take into account that such protocols
may be executed concurrently with multiple other copies of the same protocol (e.g., many voters
voting at the same time) or with different protocols (e.g., performing an electronic bank transaction
in response to the results of an on-line auction). The Universal Composability (UC) framework was
introduced by Canetti [5] in order to model the security of cryptographic protocols when executed
in such environments. Protocols proven secure within the UC framework are, in particular, secure
even under arbitrary composition.

Unfortunately, it turns out that unless a majority of the participating parties are honest (which
can never be assumed when there are only two participants), almost no useful functionality can
be securely realized in this framework [7, 8]. On the positive side, however, Canetti and Fischlin
[7] managed to circumvent these impossibility results by assuming a strong form of setup – a
common reference string (CRS). This suffices for realizing any (well-formed) functionality in the
UC framework while tolerating any number of dishonest parties [9].

The main drawback of assuming the availability of a CRS is that this requires trust in the party
that constructs the CRS, and there are no security guarantees if the CRS is set in an adversarial
manner. This state of affairs motivated the research of alternative setup assumptions that can
circumvent the impossibility results, and imply the feasibility of securely realizing natural func-
tionalities in the UC framework. A variety of alternative setup assumptions have already been
explored, such as public-key registration services [1, 6], signature cards [19] and a variation of the
CRS assumption in which multiple strings are available [18].

The above mentioned setup assumptions still require trust in at least some parties in the system.
Recently, Katz [20] proposed an alternative assumption that eliminates the need for such trusted
parties. Katz suggested basing universally composable computations on a physical assumption:
the existence of tamper-proof hardware. Under this assumption, an honest party can construct a
hardware token TF implementing any polynomial-time functionality F , but an adversary given the
token TF can do no more than observe the input/output characteristics of this token. Katz showed
that such a primitive can be used, together with standard cryptographic assumptions, to realize
the ideal multiple commitment functionality in the UC framework while tolerating any number of
dishonest parties, and hence to realize general universally composable multi-party computation [9].

1.1 Our Contributions

We revisit Katz’s proposal of basing universally composable computations on tamper-proof hard-
ware. More specifically, we focus on realizing the ideal commitment functionalities (which suffice
for realizing general UC multi-party computation [9]). In this work, we construct UC commitment
protocols using tamper-proof hardware tokens that have several advantages over Katz’s protocol:

David and Goliath: asymmetric assumptions suffice. Katz’s commitment protocol is sym-
metric with respect to the assumptions about the two parties: both parties must create a hardware
token, and both must assume that their token is proof against tampering by the other party. In
many situations, however, the two participating parties are not symmetric. For example, in a vot-
ing scenario, voters may not be able to create their own hardware, or may not trust that hardware
they create (or buy) is truly “tamper-proof” against the government (the other party in a voting
protocol).
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Our commitment protocols only require a single party (Goliath) to generate a token. The other
party (David) must ensure the token cannot communicate with Goliath, but does not have to make
any assumptions about the power of Goliath. We construct different commitment protocols for
Goliath as the sender and for Goliath as the receiver.

Reducing the computational assumptions. In addition to relying on the existence of tamper-
proof hardware tokens, Katz’s protocol relies on a specific number-theoretic assumption — the
decisional Diffie-Hellman assumption. Katz posed as an open problem to rely on general compu-
tational assumptions (under the assumption that tamper-proof hardware exists). We answer this
open problem and reduce the required computational assumptions. Our contributions in this regard
are as follows:

• We demonstrate that computational assumptions are not necessary in order to realize the
ideal functionality FCOM (this functionality allows a single commitment for each hardware
token) if we assume the existence of tamper-proof hardware tokens. That is, our protocols
that realize FCOM do not rely on any computational assumptions. These protocols are also
secure against adaptive adversaries (although the proof for the adaptive case is deferred to
the full version of the paper).

• We demonstrate that the existence of one-way functions suffices in order to realize the ideal
functionality FMCOM (this functionality allows a polynomial number of concurrent commit-
ments using the same hardware token) if we also assume the existence of tamper-proof hard-
ware tokens.

• In keeping with the David and Goliath theme, even the protocols based on one-way functions
do not make assumptions about Goliath’s computational power.

“Bare-handed” protocols. The protocols presented in this paper are highly efficient, and in
particular require David to perform only a few (elementary and simple) operations, such as com-
paring two bit-strings or computing the exclusive-or of two bit-strings (even in the protocol based
on one-way functions). When David is the receiver, these operations can be performed by “bare-
handed” humans without the aid of computers (when David is the sender, he may require a calcu-
lator). Such a property is useful in many situations where computers cannot be trusted or where
“transparency” to humans is essential (which is the case, for example, when designing voting pro-
tocols). In addition, the same efficiency guarantees hold for the hardware tokens in the protocols
that are secure against computationally unbounded adversaries; such tokens may be constructed
using extremely constrained devices.

1.2 Related Work

Basing cryptographic protocols on physical assumptions. Basing cryptographic protocols
on physical assumptions is a common practice. Perhaps the most striking example is the field of
quantum cryptography, where the physics of quantum mechanics are used to implement crypto-
graphic operations – some of which are impossible in the “bare” model. For example, Bennett and
Brassard [2] achieved information-theoretically secure key agreement over public channels based
only on assumptions about the physics of quantum mechanics.

Much work has been done on basing commitment schemes and oblivious transfer protocols on
the physical properties of communication channels, using the random noise in a communication
channel as the basis for security. Both commitment schemes and oblivious transfer protocols were
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shown to be realizable in the Binary Symmetric Channel model [13, 14], in which random noise is
added to the channel in both directions with some known probability. Later works show that they
can also be implemented, under certain conditions, in the weaker (but more convincing) Unfair
Noisy Channel model [15, 16], where the error probability is not known exactly to the honest
parties, and furthermore can be influenced by the adversary.

The work of Katz [20] was inspired by works of Chaum and Pedersen [11], Brands [4], and
Cramer and Pedersen [12] that proposed the use of smartcards in the context of e-cash. The reader
is referred to [20] for a brief description of their approach. More recently, Moran and Naor [21]
demonstrated the possibility of implementing oblivious transfer, bit-commitment and coin flipping
based on “tamper-evident seals” that model very intuitive physical models: sealed envelopes and
locked boxes.

Concurrent independent work. Independent of this paper, Chandran, Goyal and Sahai [10]
and Damg̊ard, Nielsen and Wichs [17] address the problem of basing universally composable compu-
tations on tamper-proof hardware, and construct protocols realizing the ideal multiple commitment
functionality FMCOM.

Chandran et al. [10] show that FMCOM can be realized based on tamper-proof hardware tokens
and one-way functions. The main advantage of their approach is that their security proof does not
rely on the simulator’s ability to rewind hardware tokens. This gives their protocol security against
reset attacks (where the adversary can rewind the tokens). In particular, their protocol does not
require hardware tokens to keep state between invocations. In addition, their protocol does away
with the requirement that the parties know the code of the token which they distribute (we note
that this assumption is essential both to Katz’s construction and to ours).

Damg̊ard et al. [17] focus on relaxing the “isolation” requirement and allow the hardware tokens
to communicate with the outside world as long as the number of communicated bits in both direction
is below some pre-determined threshold (which is polynomial in the security parameter). With this
relaxation in mind, they realize FMCOM assuming the existence of one-way permutations and a
semantically-secure dense public-key encryption scheme with pseudorandom ciphertexts.

The main advantage of our work over those of Chandran et al. [10] and Damg̊ard et al. [17]
is that in our constructions only one of the parties is required to create its own hardware token.
As argued above, this is desirable and often essential in many scenarios. The constructions of
Chandran et al. and Damg̊ard et al. require that each party creates its own hardware token. That
is, it is assumed that both parties have the resources required to create hardware tokens.

1.3 Paper Organization

The remainder of this paper is organized as follows. For those not familiar with the UC framework,
we give some background in Section 2, as well as formal definitions of the different commitment
functionalities. In Section 3, we briefly review the formal model for tamper-proof hardware tokens.
In Section 4, we describe our protocols for UC commitment where Goliath is the sender, and sketch
their proof of security. Section 5 does the same for the protocol in which David is the sender.
Finally, Section 6 contains a discussion and some open problems.

2 The UC Framework

In this section we briefly review the main concepts of the UC framework and describe the ideal
commitment functionalities. We refer the reader to [5] for a more detailed exposition.
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2.1 Overview

Many two-party functionalities can be easily implemented in a natural “secure” manner using a
trusted third party that follows pre-agreed rules. In proving that a two-party protocol is secure,
it is highly desirable to argue that the protocol behaves “as if it was performed using the trusted
third party”. The Universally Composability (UC) framework is a formalization of this idea. In
the UC framework, the trusted third party is called the ideal functionality. The ideal functionality
is described by an interactive Turing machine that can communicate by authenticated, private
channels with the participants of the protocol.

The notion of security in the UC framework is based on simulation: a protocol securely realizes
an ideal functionality in the UC framework if any attack on the protocol in the “real” world, where
no trusted third party exists, can be performed against the ideal functionality in the “ideal” world
with the same results. Attacks in the ideal world are carried out by an “ideal adversary” that can
also communicate privately with the functionality. The ideal adversary can corrupt honest parties
by sending a special corrupt command to the functionality, at which point the adversary assumes
full control of the corrupted party. This allows the functionality to act differently depending on
which of the parties are corrupted. Additional capabilities of the adversary are explicitly defined
by the ideal functionality.

Proving protocol security in the UC framework provides two main benefits: First, the function-
ality definition is an intuitive way to describe the desired properties of a protocol. Second (and
the original motivation for the definition of the UC framework), protocols that are secure in the
UC have very strong security properties, such as security under composition and security that is
retained when the protocol is used as a sub-protocol to replace an ideal functionality. This secu-
rity guarantee allows us to simplify many proofs, by dealing separately with the security of their
component sub-protocols.

More formally, the UC framework defines two “worlds”, which should be indistinguishable to
an outside observer called the “environment machine” (denoted Z):

The ideal world. The ideal world contains two “dummy” parties, an ideal functionality, the
environment Z, and an “ideal adversary” S. The parties in this world are “dummy” parties
because they pass any input they receive directly to the target ideal functionality, and write
anything received from the ideal functionality to their local output. S can communicate with
Z and the ideal functionality, and can corrupt one or both of the parties. S sees the input
and any communication sent to a corrupted party, and can control the output of that party.
The environment machine, Z, can set the inputs to the parties, and read their local outputs,
but cannot see the communication with the ideal functionality.

The real world. The real world contains two “real” parties, the environment Z, and a “real
adversary” A. In addition it may contain the “service” ideal functionalities (in our case these
are the hardware tokens). A can communicate with Z and the “service” ideal functionalities,
and can corrupt one or both of the parties. The uncorrupted parties follow the protocol, while
corrupted parties are completely controlled by A. As in the ideal world, Z can set the inputs
for the parties and see their outputs, but not internal communication (other than what is
known to the adversary).

Realizing an ideal functionality. A protocol securely realizes an ideal functionality in the UC
framework, if there exists an ideal adversary, S, such that for any environment machine, Z, and
real-world adversary, A, it holds that Z cannot distinguish between the ideal world and the real
world. Our proofs of security in this paper follow the general outline for a proof typical of the
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UC framework: we describe the ideal adversary, S, that “lives” in the ideal world. Internally, S
simulates the execution of the “real” adversary, A. We can assume w.l.o.g. that A is simply a
proxy for Z, sending any commands received from the environment to the appropriate party, and
relaying any communication from the parties back to the environment machine. S simulates the
real world for A, in such a way that Z cannot distinguish between the ideal world when it is talking
to S and the real world.

Some conventions. For readability, we make a few compromises in strict formality when de-
scribing functionalities in the UC framework. First, the description is in natural language rather
than pseudocode. Second, we implicitly assume the following for all the descriptions:

• All functionalities (unless explicitly specified) have a halt command that can be given by
the adversary at any time. When a functionality receives this command, it outputs ⊥ to all
parties. The functionality then halts (ignoring further commands). In a two party protocol,
this is equivalent to a party halting prematurely.

• When a functionality receives an invalid command (one that does not exist or is improperly
formatted), it proceeds as if it received the halt command.

• When we say that the functionality “verifies” some condition, we mean that if the condition
does not hold, the functionality proceeds as if it received the halt command.

2.2 The Commitment Functionalities

In the UC framework two ideal commitment functionalities are considered: functionality FCOM

that handles a single commitment-decommitment process, and functionality FMCOM that handles
multiple such processes. The advantage of FMCOM over FCOM in our setting is that protocols that
securely realize FMCOM may use the same hardware token for multiple commitments.

In this paper we consider an additional ideal commitment functionality, one that handles a
bounded number of commitment-decommitment processes. We refer to this functionality as the
ideal bounded commitment functionality FBCOM . Formal descriptions of FCOM, FBCOM and FMCOM

are provided in Figures 1, 2 and 3, respectively.

Functionality FCOM

1. Upon receiving (commit, sid, P, P ′, b) from P , where b ∈ {0, 1}, record the value b and send
(receipt, sid, P, P ′) to P ′ and the adversary. Ignore any subsequent commit messages.

2. Upon receiving (open, sid, P, P ′) from P , if some value b was previously recorded then send
(open, sid, P, P ′, b) to P ′ and the adversary and halt. Otherwise halt.

Figure 1: The ideal commitment functionality.
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Functionality FBCOM

FBCOM is parameterized by a bound n on the number of allowed commitment-decommitment processes and
an implicit security parameter k, and stores an internal counter j initialized to 0.

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, if j < n then set j ← j + 1,
record (cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the adversary. Ignore any subsequent
(commit, sid, cid, P, P ′, ?) messages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previously recorded then
send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise halt.

Figure 2: The ideal bounded commitment functionality.

Functionality FMCOM

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, record (cid, P, P ′, b) and send
(receipt, sid, cid, P, P ′) to P ′ and the adversary. Ignore any subsequent (commit, sid, cid, P, P ′, ?) mes-
sages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previously recorded then
send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise halt.

Figure 3: The ideal multiple commitment functionality.

3 Modeling Tamper-Proof Hardware

Our formulation of tamper-proof hardware tokens is based on the one provided by Katz [20]. Katz
defined an ideal “wrapper” functionality, FWRAP, which captures the intuitive idea that an honest
party can construct a hardware token TF implementing any polynomial-time functionality F , but
an adversary given the token TF can do no more than observe the input/output characteristics
of this token. An honest party, given a token T ′

F ′ by an adversary, has no guarantee regarding
the function F ′ that this token implements (other than what the honest user can deduce from the
input/output of this device).

Figure 4 describes our formulation of the ideal functionality FWRAP. Informally, a party P is
allowed to create a hardware token, which is then delivered to P ′. We refer to P as the creator of
the token, and to P ′ as the user of the token. The hardware token encapsulates a Turing machine
M which is provided by the creator P . At this point, the functionality allows the user P ′ to interact
with the Turing machine M in a black-box manner. That is, P ′ is allowed to send messages of its
choice to M via the wrapper functionality, and receive the corresponding answers.

As in Katz’s formulation, we assume that the tokens are partially isolated, in the sense that a
token cannot communicate with its creator. Our formulation also allows the tokens to maintain
state between invocations. Although tokens created by honest parties are only required to maintain
a limited state (such as the current round number), we allow tokens created by adversarial parties
to maintain arbitrary state across invocations.
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Functionality FWRAP

FWRAP is parametrized by a polynomial p(·) and an implicit security parameter k.

1. Upon receiving (create, sid, P, P ′,M) from P , where M is a description of a Turing machine, do:

(a) Send (create, sid, P, P ′) to P ′.

(b) If no tuple of the form (P, P ′, ?, ?) is stored, then store (P, P ′,M,⊥).

2. Upon receiving (run, sid, P, msg) from P ′, do:

(a) If no tuple of the form (P, P ′, ?, ?) is stored, then halt. Otherwise, retrieve the unique stored
tuple (P, P ′,M, state).

(b) Run M(msg, state) for at most p(k) steps, and denote the result by (out, state′). If M does not
respond in the allotted time then set out = ⊥ and state′ = state.

(c) Send (sid, P, out) to P ′, store (P, P ′,M, state′) and erase (P, P ′,M, state).

Figure 4: The ideal FWRAP functionality.

4 Constructing Goliath Commitments

In this section we describe protocols that realize the ideal bounded commitment functionality, FBCOM

(see Figure 2), and the ideal multiple commitment functionality, FMCOM (see Figure 3). In these
protocols, only the sender creates a hardware token (i.e., the sender is the powerful Goliath). Our
protocol for realizing FBCOM does not rely on any computational assumptions, and our protocol
for realizing FMCOM relies on the existence of any one-way function. In specifying the protocols we
treat the hardware token as one of the parties in the protocol. The code executed by the token
(i.e., the description of the Turing machine M sent to FWRAP) is implicitly described by the token’s
role in the protocol.

Notation. For a bit m, we denote ~m
def
= m ◦ · · · ◦ m ∈ {0, 1}k the k-bit string consisting of k

copies of m. We denote the bitwise complement of a string m by m̄. The bitwise xor of two strings,
a and b is denoted a⊕ b, while the bitwise and of a and b is denoted a� b.

4.1 Realizing the Ideal FBCOM Functionality

The intuition underlying our commitment protocol is that the hardware token is already a form of
commitment — the sender is committing to a program that is hidden by the wrapping functionality,
and cannot be changed once it is sent. The sender “hides” the comitted value in the program. The
problem is that the receiver should not be able to extract the value before the opening phase. We
solve this by using the fact that the token cannot communicate with the sender; the receiver sends
the token a random challenge whose response depends on the hidden value, but does not reveal
it. Because the sender does not know the challenge, he will be caught with high probability if he
attempts to equivocate in the opening phase.

A formal description of the protocol is provided in Figure 5, which is followed by a sketch of its
security proof.
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Protocol BCOMGoliath

Joint input: a security parameter k, and a bound n on the number of allowed commitment-decommitment
processes.

Setup phase. The sender chooses n random pairs (ai, bi)
R← {0, 1}k × {0, 1}k and creates a token with

these parameters. The token also contains state in the form of a counter j initialized to 0. The sender sends
the token to the receiver.

Commit phase. Denote the sender’s input by (cid,m), and denote by i the number of invocations of
the commit phase so far between the sender and the receiver. We assume w.l.o.g. that cid = i (otherwise,
both sides can maintain a database that translates between the two).

1. The sender computes xi ← ai ⊕ bi ⊕ ~m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends ⊥ to the receiver and
halts). It increments the counter j ← j +1. The token computes yi ← ai� ci⊕ bi� c̄i and sends (i, yi)
to the receiver (this is equivalent to letting each bit of ci choose whether to send the corresponding
bit of ai or the corresponding bit of bi).

Opening phase.

1. The sender sends m and (i, ai, bi) to the receiver.

2. The receiver computes zi ← ai ⊕ bi and verifies that zi ⊕ xi = ~m and that ai � ci ⊕ bi � c̄i = yi. If
not, it outputs ⊥ and halts. Otherwise, it outputs m.

Figure 5: Protocol BCOMGoliath.

Security intuition. To see why the protocol is hiding, note that after the commit phase the
value a⊕ b remains uniformly distributed from the receiver’s point of view, regardless of the value
of m (since, for every index `, the receiver can choose to learn either the `th bit of a or the `th bit
of b, but not both).

The protocol is binding because in order to equivocate, the sender must change at least 1
2k bits

of a and b in the opening phase. Because the sender does not know the challenge sent to the token,
and hence does not know which bits of a and b the receiver has already seen, if it tries to equivocate
it will be caught with overwhelming probability.

Proof sketch. For simplicity we sketch the proof of security only for the case of a static adversary,
as this case already captures the important ideas in the proof. A complete proof for the case of
an adaptive adversary will be provided in the full version of this paper. In order to prove that the
protocol realizes FBCOM we need to construct a polynomial-time simulator S (an ideal adversary)
such that for any polynomial-time environment machine Z and real-world A, it holds that Z cannot
distinguish between the ideal world and the real world with non-negligible advantage. In this sketch
we focus on the two cases in which only one of the parties is corrupted. The cases in which both
parties are corrupted or both parties are honest are dealt with in a straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of all the real-world
parties and functionalities: the sender, the receiver and FWRAP (this includes a simulation of the
hardware token). Unless explicitly specified by the simulation protocols below, the simulated honest
parties and FWRAP follow the honest protocol exactly. S keeps a “simulated view” for each honest
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party, consisting of the party’s input (in the sender’s case), its random coins, and the transcript of
messages that party received throughout the simulation. At some points in the simulation, S may
“rewrite” the simulated view of an honest party. It makes sure the new simulated view is consistent
with any messages previously sent by that party to a corrupt party (note that FWRAP can never be
corrupted, so messages sent to FWRAP may be changed as well).

Corrupted receiver. In the setup phase S simulates the interaction between FWRAP, the honest
sender and the corrupt receiver. That is, it chooses n random pairs (ai, bi) and sends to the
simulated copy of FWRAP a description of the Turing machine which was specified by the protocol.

Whenever S receives a message (receipt, i) from FBCOM , it chooses a random bit m′
i and simulates

the honest sender with input (i,m′
i) interacting with the receiver and with the token. In this case

it may be that S is simulating the honest sender with the wrong input, that is, in the ideal world
the sender committed to mi which is different from m′

i. We claim, however, that the view of
the simulated receiver is independent of the committed bit and thus the view of A is identically
distributed in both cases. The view of the simulated receiver consists of xi = ai ⊕ bi ⊕ ~m′

i and
yi ← ai � ci ⊕ bi � c̄i. Each bit of yi reveals either the corresponding bit of ai or the corresponding
bit of bi. This implies that the value ai ⊕ bi is uniformly distributed from the receiver’s point of
view, and therefore xi is uniformly distributed as well.

Whenever S receives a message (open, i,mi) from FBCOM there are two possible cases. In the
first case, it holds that m′

i (the bit with which S simulated the i-th commit stage) is the same as
the revealed bit mi. In this case S simulates the honest sender following the opening phase of the
protocol. The simulation is clearly perfect in this case. In the second case, it holds that m′

i 6= mi.
If the simulated receiver sent some ci to the token in the i-th commit phase, then S rewrites the
history of the simulated sender by replacing ai and bi with âi ← ai ⊕ c̄i and b̂i ← bi ⊕ ci, and
simulates the sender in the opening phase. Note that the new values satisfy yi = ci � âi ⊕ c̄i � b̂i

and âi⊕ b̂i⊕ xi = ~mi (and are uniformly distributed given this view), and therefore the simulation
matches the real world. If the receiver did not send ci to the token in the i-th commit phase, then
S internally rewinds the token to the point in which commit(i, m′

i) was invoked and reruns the
simulation from that point, replacing m′

i with mi and leaving all other inputs and random coins
without change. Since the token is just part of the simulation of FWRAP, and S knows the code it
is executing, it can efficiently rewind it. Note that the messages seen by the receiver do not change
and therefore the simulation is correct.

Corrupted sender. In the setup phase S simulates FWRAP to A who sends a description of a
Turing machine M to FWRAP. S now has a description of M and this will be used to rewind the
simulated token at a later stage.

Whenever A initiates a new commit phase (say, the i-th commit phase), S simulates the honest
receiver in this execution. If the commit phase was successful, then S needs to “extract” the bit
mi to which the corrupted sender committed to in order to instruct the sender in the ideal world
to send this bit to FBCOM . S rewinds the simulated token to the point in time before the honest
receiver sent the challenge ci to the token. S instead simulates sending (i, c̄i) as the challenge.
Denote the response y′i. Now S “guesses” the values ai and bi using the original response yi and
the new response y′i as follows: if the first bit of ci was 1, then S sets the first bit of the guess for
ai to be the first bit of yi, otherwise it sets the first bit of the guess for bi to be the first bit of y′i.
Similarly S “guesses” all the bits of ai and bi. Denote by a′i and b′i these guesses. S sets m′

i as the
majority of the bit-string a′i ⊕ b′i ⊕ xi. S then instructs the ideal sender to send (commit, i,m′

i) to
FBCOM .
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Whenever A initiates a new opening phase by sending (i, ai, bi) to the simulated receiver, S
simulates the honest receiver in the opening phase. If yi = ci � ai ⊕ c̄i � bi and xi ⊕ ai ⊕ bi = ~mi,
where mi is the bit that S instructed the ideal sender to send to FBCOM in the i-th commit phase,
then S instructs the ideal sender to send (open, i) to FBCOM . In this case we have that mi = m′

i and
therefore the simulation is perfect. If the latter verification step fails, then S halts. The key point
is that this happens only with negligible probability. That is, the probability that the corrupted
sender manages to reveal its commitment to a bit different than m′

i is negligible.
In order to prove that the latter probability is indeed negligible, we consider the following game

between two provers and a verifier: The verifier chooses a random bit c and sends it to the first
prover. The first prover sends a bit y, and the second prover sends the bits (a, b, a′, b′). The verifier
accepts if a⊕b = ¬(a′⊕b′) and y = a�c⊕b� c̄ = a′�c⊕b′� c̄. If the provers cannot communicate,
the verifier will accept with probability at most 1/2 since for a⊕b = ¬(a′⊕b′) to hold, either a 6= a′

(in which case when c = 1 the verifier does not accept) or b 6= b′ (in which case when c = 0 the
verifier does not accept).

In our protocol, if we consider only a single bit from each of the strings ai, bi, ci, xi and yi, we
can think of the sender and receiver as playing this game: the receiver is the verifier, and the sender
and token are the two provers. The sender “wins” (causes the receiver to accept) if it opens that
bit of the commitment to a different value than that “extracted” by the simulator in the commit
phase. In the real protocol’s commit phase, the game is played k times in parallel. Since the actual
bit extracted by the simulator is the majority of the bits extracted from each of the games, in
order for the sender to successfully open the commitment to a different bit, it must win in at least
k/2 games. By the Parallel Repetition Theorem [22], the probability that the verifier accepts is
exponentially small in the number of parallel repetitions.

4.2 Realizing the Ideal FMCOM Functionality

We show a simple variation of protocol BCOMGoliath that realizes the ideal FMCOM functionality. In
the setup phase of BCOMGoliath, the sender chooses several random pairs (ai, bi) and creates a token
with these parameters. The number of commitments the protocol supports is therefore limited to
the number of such pairs. However, if we are willing to rely on computational assumptions, the
pairs (ai, bi) can be obtained as the output of a pseudorandom function on input i.

In the setup phase of the new protocol MCOMGoliath the sender chooses random seeds a and b for
a family of pseudorandom functions F = {fs}. The protocol then proceeds exactly as BCOMGoliath

with the pairs (fa(i), fb(i)). A formal description of the protocol is provided in Figure 6.
In order to argue that protocol MCOMGoliath realizes FMCOM we first consider the protocol

BCOMGoliath when parametrized with n = 2k (recall that k is the security parameter and n is the
number of allowed commitments). With these parameters, the setup phase of the protocol consists
of the sender choosing n = 2k random pairs (ai, bi), and the protocol allows the sender and the
receiver to perform 2k commitments – in particular it realizes FMCOM in the computational setting
(ignoring the fact that the setup phase and the storage required by the token are exponential). Now,
we claim that no polynomial-time adversary can distinguish between this protocol and the protocol
MCOMGoliath with non-negligible probability, as any such adversary can be used in a straightforward
manner to distinguish a random function chosen from the family F from a completely random
function with non-negligible probability. Therefore, protocol MCOMGoliath realizes the ideal FMCOM

functionality.
Since this proof relies on the seeds of the pseudorandom functions remaining secret from the

adversary, it cannot be used to prove security against an adaptive adversary. In particular, the
token’s response in step 3 of the Commit phase may form a commitment to the seeds (a, b), in
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which case MCOMGoliath is not secure against an adaptive adversary.

Protocol MCOMGoliath

Joint input: a security parameter k, and a family F of pseudorandom functions fs : {0, 1}k → {0, 1}k.

Setup phase. The sender chooses random seeds a and b for the family F and creates a token with these
parameters. The token also contains state in the form of a counter j initialized to 0. The sender sends the
token to the receiver.

Commit phase. Denote the sender’s input by (cid,m), and denote by i the number of invocations of
the commit phase so far between the sender and the receiver. We assume w.l.o.g. that cid = i (otherwise,
both sides can maintain a database that translates between the two).

1. The sender computes xi ← fa(i)⊕ fb(i)⊕ ~m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends ⊥ to the receiver
and halts). It increments the counter j ← j + 1. The token computes yi ← fa(i) � ci ⊕ fb(i) � c̄i

and sends (i, yi) to the receiver (this is equivalent to letting each bit of ci choose whether to send the
corresponding bit of fa(i) or the corresponding bit of fb(i)).

Opening phase.

1. The sender sends m and (i, fa(i), fb(i)) to the receiver.

2. The receiver computes zi ← fa(i)⊕fb(i) and verifies that zi⊕xi = ~m and that fb(i)�ci⊕fa(i)�c̄i = yi.
If not, it outputs ⊥ and halts. Otherwise, it outputs m.

Figure 6: Protocol MCOMGoliath.

5 Constructing David Commitments

In this section we describe a protocol that realizes the ideal commitment functionality FCOM (see
Figure 1) without any computational assumptions, where only the receiver creates a hardware token
(i.e., the sender is the limited David). In specifying the protocol we again treat the hardware token
as one of the protocol participants. The code executed by the token (i.e., the description of the
Turing machine M sent to FWRAP) is implicitly described by the token’s role in the protocol.

The intuition behind the protocol is that David can perform a commitment protocol with the
token. Since there is no communication at all with Goliath, the commitment would be perfectly
hiding. In such a case, however, David could postpone the interaction with the token to the opening
phase (thus enabling him to equivocate). To overcome this problem, David must prove to Goliath
during the commit phase that he has already interacted with the token. David does this by giving
Goliath a “password” that was contained in the token. However, to prevent the token from using
the password to give information about his commitment, David first “tests” Goliath to ensure that
he already knows the password. In the opening phase, David sends Goliath a second password
(that does depend on the committed bit), which Goliath can verify.

A formal description of the protocol is provided in Figure 7, which is followed by a sketch of its
security proof. A complete proof will be provided in the full version of the paper.
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Protocol COMDavid

Joint input: a security parameter k.

Setup phase. The receiver chooses four random values s, t
R← {0, 1}k, u, v

R← {0, 1}k/2, and creates a
token with these parameters. The token contains a flag j initialized to 0. The receiver sends the token to
the sender.

Commit phase. Denote the sender’s input by m ∈ {0, 1}.

1. The sender chooses two random values a, b
R← {0, 1}k/2 and sends a to the token.

2. The token verifies that the internal flag j = 0 (otherwise it sends ⊥ to the sender and halts). It sets
j ← 1. The token computes x ← u · a + v (the computation is in GF [2k/2]) and sends s, t and x to
the sender.

3. The sender chooses a random challenge c
R← {0, 1}k and sends it the receiver, who replies with y = s·c+t

(the computation is in GF [2k]).

4. The sender verifies that y = s ·c+ t, and in this case the sender sends to the receiver s, t, z = 〈a, b〉⊕m
and b. If the verification fails then the sender halts.

Opening phase.

1. The sender sends m, a and x to the receiver.

2. The receiver verifies that x = u · a + v and that z ⊕ 〈a, b〉 = m. If not, it outputs ⊥ and halts.
Otherwise, it outputs m.

Figure 7: Protocol COMDavid.

Proof sketch. We sketch the proof of security for the case of a static adversary. In order to
prove that the protocol realizes FCOM we need to construct simulator S (an ideal adversary) such
that for any polynomial-time environment machine Z and real-world adversary A, it holds that
Z cannot distinguish between the ideal world and the real world with a non-negligible advantage.
We note that our simulator in this proof runs in expected polynomial time (whereas the simulators
in the previous section run in strict polynomial time). In this sketch we focus on the two cases in
which only one of the parties is corrupted. The cases in which both parties are corrupted or both
parties are honest are dealt with in a straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of all the real-world
parties and functionalities: the sender, the receiver and FWRAP. Unless explicitly specified by the
simulation protocols below, the simulated honest parties and FWRAP follow the honest protocol
exactly. S keeps a “simulated view” for each honest party, consisting of the party’s input (in the
sender’s case), its random coins, and the transcript of messages that party received throughout the
simulation. At some points in the simulation, S may “rewrite” the simulated view of an honest
party. It makes sure the new simulated view is consistent with any messages previously sent by
that party to a corrupt party (note that FWRAP can never be corrupted, so messages sent to FWRAP

may be changed as well).

Corrupted receiver. In the setup phase S simulates FWRAP to A who sends (on behalf of the
simulated receiver) a description of a Turing machine M to FWRAP. S now has a description of M
and this will be used to rewind the simulated token at a later stage.

When S receives a message (receipt) from FCOM, it chooses a random bit m′ and simulates the
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honest sender with input m′ interacting with the receiver and with the token. In this case it may be
that S is simulating the honest sender with the wrong input, that is, in the ideal world the sender
committed to m which is different from m′. We claim however, that the view of the simulated
receiver is statistically-close to be independent of the committed bit.

The view of the simulated receiver consists of the challenge c, and of s, t, z = 〈a, b〉 ⊕m′ and
b. First, note that if the sender halts before sending the last message of the commit phase, the
receiver’s view is completely independent of the input bit (since it only affects the last message).
So we only need to show that the view is statistically close to independent of m′ conditioned on
the sender completing the commitment phase successfully.

Since b is only sent in the last message, we can think of it being chosen then. Informally
speaking, if there are many values of a for which the token returns some specific s and t, then by
choosing b at random, with overwhelming probability 〈a, b〉 = 0 for approximately half of them.
Therefore z = 〈a, b〉 ⊕m′ will be almost uniformly distributed, and hence almost independent of
m′. If, on the other hand, there are only a few values of a for which the token returns some specific
s and t, then the probability that the receiver given a random challenge c can predict s · c + t (and
thus allow the sender to complete the commit phase) is negligible.

Whenever S receives a message (open,m) from FBCOM there are two possible cases. In the first
case, it holds that m′ (the bit with which S simulated the commit stage) is the same as the revealed
bit m. In this case S simulates the honest sender following the opening phase of the protocol. The
simulation is clearly perfect in this case. In the second case, it holds that m′ 6= m. Denote by
a the value that the simulated sender sent to the token in the simulated commit stage. The goal
of the simulator is to rewind the simulated token and feed it with random values a′ satisfying
〈a′, b〉 ⊕ z = m′ until either 2k iterations have passed or until the token outputs (s′, t′, x′) where s′

and t′ are the same s and t that the token output when it was given a. If more than 2k iterations
have passed, then S fails and halts. Otherwise, S simulates the honest sender in the opening phase
by sending a′, x′ and m′. Clearly, if S does not halt and manages to find such a′, then the simulation
is correct. In what follows we argue that the expected running time of the simulator is polynomial
in the security parameter k.

We show that for any set of random coins of the corrupted receiver, the expected running time
of S is upper bounded by a (fixed) polynomial. Fix the random coins of the receiver, then the
receiver and the token define two functions: the token defines the function T (a) = (s, t, x) and the
receiver defines the function y(c). Then the expected number of iterations performed by S is given
by

E [Iterations] =
∑
s,t,c

Pra [s, t] · Prc [c] · E [Iterations|s, t, c] .

Notice that if the tuple (s, t, c) is not consistent, in the sense that s ·c+ t 6= y(c), then the simulator
halts. In addition, conditioned on s and t, the expected number of iterations is independent of c and
is equal 1/Pra [s, t] (here we ignore the requirement that 〈a′, b〉 ⊕ z = m′, since b was chosen after
s and t were determined, and therefore this requirement will only multiply the expected running
time by some constant). Therefore,

E [Iterations] = 2−k ·
∑

consistent (s,t,c)
s.t. Pr[s,t]>0

Pra [s, t] · 1
Pra [s, t]

= 2−k ·
∑

c

|{(s, t) : Pra [s, t] > 0 and (s, t, c) is consistent}| .

We conclude the argument by showing that the above sum is at most O(2k) which implies that
E [Iterations] is constant. Consider the bipartite graph G = (L,R,E) defined as follows. The left
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set L is the set of all pairs (s, t) for which Pra [s, t] > 0. Notice that since a ∈ {0, 1}k/2 then
|L| ≤ 2k/2. The right set R is the set of all possible c values, i.e., the set {0, 1}k. Finally, an edge
((s, t), c) exists if the tuple (s, t, c) is consistent, i.e., satisfies s · c + t = y(c). The above sum is
exactly the number of edges in the graph: for every c ∈ R we count the number of incoming edges
((s, t), c). The useful property of this graph is that it does not contain any cycles of length 4: it
is straightforward to verify that there cannot be two different left-side vertices (s1, t1) and (s2, t2),
and two different right-side vertices c1 and c2 that form a cycle of length 4). We can thus use the
following theorem to conclude that the number of edges in the graph is at most O(2k):

Theorem 5.1 ([3], Chapter 6, Theorem 2.2). Let Z(m,n; s, t) be the minimal number such
that any bipartite graph with vertex parts of orders m and n and Z(m,n; s, t) edges must contain
as a subgraph Ks,t (the complete bipartite graph with vertex parts of orders s and t). Then

Z(m,n; s, t) < (s− 1)1/t(n− t + 1)m1−1/t + (t− 1)m .

Note that K2,2 is a cycle of length 4, hence the number of edges in the graph is bounded by
Z(2k, 2k/2; 2, 2) < (2k/2 − 1)(2k)1/2 + 2k < 2k+1.

Corrupted sender. In the setup phase S simulates the interaction between FWRAP, the corrupted
sender and the honest receiver. That is, it chooses (on behalf of the receiver) random values s, t, u
and v, and sends to the simulated copy of FWRAP a description of the Turing machine which was
specified by the protocol.

Whenever A initiates a commit phase, S simulates the honest receiver in this execution. If
the commit phase was successful, then S needs to “extract” the bit m to which the corrupted
sender is committed in order to instruct the sender in the ideal world to send this bit to FCOM. If
the corrupted sender sent a value a to the simulated token, then S computes m′ = 〈a, b〉 ⊕ z and
instructs the sender in the ideal world to send (commit,m′) to FCOM. if the sender did not send
any value to the token, S chooses a random bit m′ and instructs the sender in the ideal world to
send (commit,m′) to FCOM.

Whenever A initiates a new opening phase by sending (a, x,m) to the simulated receiver, then
S simulates the honest receiver in the opening phase. If x = u · a + v and z ⊕ 〈a, b〉 = m, where
u, v, z and b are the values from the commit phase, and m = m′ where m′ is the bit that the
ideal sender sent to FCOM in the commit phase, then S instructs the ideal sender to send (open) to
FCOM. In this case the simulation is perfect. If the latter verification step fails, then S halts. The
key point is that this happens only with negligible probability. That is, the probability that the
corrupted sender manages to reveal its commitment to a bit different than m′ is negligible. This is
because in order to open his commitment to a different bit, the sender must send some a′ 6= a in
the opening phase. However, to successfully pass verification, the sender must guess the value for
u · a′ + v (having seen, at most, u · a + v). Since these values are independent, the sender guesses
correctly with negligible probability.

6 Discussion and Open Problems

Multiple commitment functionality for David. Our protocol for commitment when David
is the sender only realizes the FCOM functionality. Unfortunately, this is an inherent limitation in
the protocol rather than an artifact of the proof; when commit is invoked multiple times using the
same hardware token, the token’s messages when opening a commitment can reveal information
about other commitments (that have not yet been opened). Constructing an FMCOM functionality
for David is an interesting open problem.
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We note that the protocol can be composed serially using a single token (as long as every com-
mitment is opened before the next one is invoked). Using the same idea as we did in Goliath’s
commitment protocol, we can then replace the random values with a pseudorandom function to
extend the functionality to any polynomial number of serial invocations (this means that the actual
number of hardware tokens needed depends only on the maximum number of concurrent commit-
ments).

Human-compatible commitment for David. David’s commitment protocol (cf. Figure 7)
requires David to perform a multiplication and an addition operation in a large finite field. While
this may be possible to do on paper (or with a calculator), it would be useful to find a protocol that
can be performed using simpler operations (as is the case with Goliath’s commitment protocols).

Strict polynomial-time simulation for David’s commitment. The simulator for David’s
commitment protocol, unlike Goliath’s, runs in expected polynomial time when Goliath is cor-
rupted (rather than strict polynomial time). Although we prove this protocol is secure even for a
computationally unbounded Goliath, it is still an interesting question whether a protocol can be
constructed with a strict polynomial-time simulator.

Relaxing the physical assumption to tamper-evident hardware. Katz’s protocol can be
implemented using tamper-evident, rather than tamper-proof hardware, if the tokens are returned
to their creators after the setup phase. Our bounded commitment protocol can also use this relaxed
assumption; since the queries to the token do not depend on the bit to be committed, they can be
made ahead of time and the token returned to its owner. This method will not work if the number
of commitments is not known ahead of time. Finding a David/Goliath protocol for FMCOM based
on tamper-evident rather than tamper-proof hardware is an interesting problem.
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