

Abstract

In this thesis we investigate methods for designing and analyzing cryptographic schemes which take into
account the differences between humans and computers. On the one hand, humans have trouble performing
complex algorithms and mathematical computations. On the other, humans live in a physical world, and
can make use of “real” objects in ways that purely electronic algorithms cannot.

Tamper-Evident Seals. In the first part of the thesis (Chapters 2 and 3), we construct cryptographic pro-
tocols that rely on the properties of everyday objects (such as locks, envelopes or scratch-off cards). In
Chapter 2, we formally define the properties of tamper-evident seals. We consider several variants of the
“intuitive” definition, and study their relation to basic cryptographic primitives (such as fair coin-flipping,
bit-commitment and oblivious transfer), giving both positive and negative results. In Chapter 3, we use
scratch-off cards and envelopes to construct protocols for securely conducting polls of sensitive questions:
the responders can safely answer truthfully while maintaining plausible deniability (the pollster will never
be certain of their actual answer), but at the same time cannot bias the results of the poll. The protocols
are simple enough to be used in practice.

Voting Protocols. The distinction between the capabilities of humans and computers is especially evident
in the context of voting, where voters need to be certain that their ballots were taken into account, even if
they mistrust the computers running the election. The second part of the thesis (Chapters 4 and 5) deals
specifically with protocols for secure elections. We present two protocols for universally-verifiable voting;
both allow voters to verify that their ballots were cast correctly and allow anyone to verify that the published
final tally is correct — even if the computers running the election behave maliciously. Both protocols also
have the property of everlasting privacy : the data published during the election contains no information at
all about voters’ choices (beyond the final tally). This ensures that even if the cryptographic assumptions
used by these protocols are subsequently broken, voter privacy will not be violated.

Formal Analysis. One of our major aims is to provide rigorous proofs of security for cryptographic protocols
involving humans. We give formal proofs of security for our protocols in the Universal Composability model,
which gives very powerful guarantees about the security of the protocols when run concurrently with other
protocols and when used as building-blocks in larger protocols.

The following published papers are included in this thesis:

Chapter 2: Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. In ICALP
2005, volume 3580 of LNCS, pages 285–297, 2005.

Chapter 3: Tal Moran and Moni Naor. Polling with physical envelopes: A rigorous analysis of a human-
centric protocol. In EUROCRYPT 2006, pages 88–108, 2006.

Chapter 4: Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy.
In CRYPTO 2006, volume 4117 of LNCS, pages 373–392, 2006.

Chapter 5: Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with distributed trust. In
CCS 2007, pages 246–255, 2007.

i

ii ABSTRACT

Acknowledgments

Like learning to juggle, starting out in research is a lot easier if your mentor can catch everything you throw
— and pass it back in a perfect parabola. I feel privileged to have had such a mentor in Moni Naor, my
thesis advisor. Most of the balls I’m holding aloft myself can be traced to the exhilarating passing sessions
that conversations with Moni usually resemble. My deepest thanks to Moni for the many balls he threw my
way, for his guidance and for being willing to talk even at odd hours.

I would like to express my gratitude to Josh Benaloh, my mentor during a delightful summer at Microsoft,
who took me under his wing and to the other side of the world.

Many thanks to Adi Shamir for his comments, support and for appearing in the audience, asking insightful
questions, no matter where in the world I gave a talk.

I would like to thank Ronen Shaltiel for his support and encouragement. After talking to Ronen I always
find myself looking at things from a new perspective.

I also thank the faculty and students at the Weizmann Institute, in whose company even stale cookies can
be a source of inspiration. Thanks to my office-mates, past and present: Yuval Emek, Ariel Gabizon, Ronen
Gradwohl, Iftach Haitner, Danny Harnik, Erez Kantor, Dana Moshkovitz, Gil Segev and Amir Yehudayoff.
Special thanks are due to Gil, a coauthor and academic sibling, with whom collaborating has been both
fruitful and fun. Heartfelt thanks to Dana, with whom I’ve shared a cubicle, an academic path and many
deep discussions about life, the universe and everything.

Thanks to my family, friends and Simba the cat, for their unwavering support and for his help in keeping
my keyboard warm during cold nights. Finally, deepest thanks to my Maya, for her love and understanding.

iii

iv ABSTRACT

Contents

Abstract i

1 Introduction 1
1.1 Basing Protocols on Tamper-Evident Seals . 2

1.1.1 Seals in Different Flavours . 3
1.1.2 Our Results: Theoretical Foundations . 3
1.1.3 Our Results: Secure Polling Protocols . 4

1.2 Human Aware Voting Protocols . 5
1.2.1 Receipt-Free Human Verifiable Voting with Everlasting Privacy 5
1.2.2 Split-Ballot Voting: Everlasting Privacy With Distributed Trust 6

2 Basing Cryptographic Protocols on Tamper-Evident Seals 9
2.1 Introduction . 9

2.1.1 Seals in Different Flavours . 10
2.1.2 Our Results . 10
2.1.3 Related Work . 11
2.1.4 Organization of the Paper . 12

2.2 The Model: Ideal Functionalities . 12
2.2.1 Ideal Functionalities and the UC Framework . 12
2.2.2 Tamper-Evident Seals . 13
2.2.3 Target Functionalities . 15
2.2.4 Intermediate Functionalities . 16
2.2.5 Proofs in the UC Model . 18

2.3 Capabilities of the Distinguishable Weak-Lock Model . 19
2.3.1 A Weakly-Fair Coin Flipping Protocol . 19
2.3.2 Oblivious Transfer is Impossible . 19
2.3.3 Bit-Commitment is Impossible . 20

2.4 Capabilities of the Distinguishable Envelope Model . 23
2.4.1 Oblivious Transfer is Impossible . 23
2.4.2 Bit Commitment . 25
2.4.3 A Strongly-Fair Coin Flipping Protocol with Bias O(1

r) 26
2.4.4 Lower Bound for Strongly-Fair Coin Flipping . 27

2.5 Capabilities of the Indistinguishable Weak-Lock Model . 28
2.5.1 A (1

2 ,
1
3)-Possibly Cheating Weak Oblivious Transfer Protocol 28

2.6 Proof of Security for Weakly-Fair Coin Flipping Protocol . 29
2.6.1 A Corrupts Bob . 29
2.6.2 A Corrupts Alice . 32

2.7 Proof of Security for Strongly-Fair Coin Flip Protocol . 33
2.7.1 A Corrupts Alice . 33
2.7.2 A Corrupts Bob . 33

2.8 Proof of Security for Remotely Inspectable Seals . 35

v

vi CONTENTS

2.8.1 Proof of Security for 1
2 -RIS Protocol (Protocol 2.4) . 35

2.8.2 Amplification for Remotely Inspectable Seals . 37
2.9 Proof of Security for Bit-Commitment Protocol . 37

2.9.1 A corrupts Alice (the sender) . 38
2.9.2 A corrupts Bob (the receiver) . 38
2.9.3 Amplification for Weak Bit Commitment . 39

2.10 Proof of Security for Oblivious Transfer Protocol . 40
2.10.1 A corrupts the receiver . 40
2.10.2 A corrupts the sender . 42

2.11 Discussion and Open Problems . 44
2.11.1 Zero Knowledge Without Bit Commitment . 44
2.11.2 Actual Human Feasibility . 44

3 Polling With Physical Envelopes 45
3.1 Introduction . 45

3.1.1 Our Results . 46
3.1.2 Related Work . 46

3.2 The Model . 48
3.2.1 Cryptographic Randomized Response . 48
3.2.2 Modelling Humans . 50
3.2.3 Distinguishable Envelopes . 50
3.2.4 Proofs in the UC Model . 50

3.3 An Informal Presentation of the Protocols . 51
3.3.1 Pollster-Immune CRRT . 51
3.3.2 Responder-Immune CRRT . 53

3.4 A Pollster-Immune 3
4 -CRRT Protocol . 55

3.4.1 Formal Specification . 55
3.4.2 Proof of Security . 55

3.5 A Responder-Immune 2
3 -CRRT Protocol . 59

3.5.1 Formal Specification . 59
3.5.2 Proof of Security . 60

3.6 Strong CRRT Protocols . 64
3.6.1 Lower Bounds and Impossibility Results . 66

3.7 Discussion and Open Problems . 67
3.7.1 p-CRRT for General p . 67
3.7.2 Additional Considerations . 68

3.A Formal Definition of Distinguishable Envelopes . 69

4 Receipt-Free Verifiable Voting With Everlasting Privacy 71
4.1 Introduction . 71

4.1.1 Challenges in Designing Voting Protocols . 71
4.1.2 Our Results . 72
4.1.3 Previous Work on Voting Protocols . 72

4.2 The Model . 74
4.2.1 Basic Assumptions . 74
4.2.2 Participating Parties . 75
4.2.3 Protocol Structure and Communication Model . 75
4.2.4 Universal Composability . 76
4.2.5 Receipt-Freeness . 77
4.2.6 Timing Attacks . 77

4.3 Informal Protocol Description . 77
4.3.1 Overview . 77
4.3.2 A Voter’s Perspective . 78

CONTENTS vii

4.3.3 Behind the Scenes: An Efficient Protocol Based on the Discrete Log Assumption . . . 79
4.3.4 Using Generic Commitment . 81

4.4 Abstract Protocol Construction . 82
4.4.1 Building Blocks . 82
4.4.2 Protocol Description . 84
4.4.3 Protocol Security . 87

4.5 Incoercibility and Receipt-Freeness . 87
4.5.1 The Ideal World . 89
4.5.2 The Real World . 89
4.5.3 A Formal Definition of Receipt-Freeness . 90
4.5.4 Receipt-Freeness of Our Voting Protocol . 90

4.6 Proof of Accuracy and Privacy . 92
4.6.1 The Ideal World Simulation . 92
4.6.2 Indistinguishability of Views . 94

4.7 Basing Commit-and-Copy on Standard Commitment . 97
4.7.1 Protocol Description . 97
4.7.2 The Ideal-World Simulation . 99
4.7.3 Indistinguishability of Views . 103

4.8 Discussion . 104

5 Split-Ballot Voting 107
5.1 Introduction . 107

5.1.1 Our Contributions . 108
5.1.2 Related Work . 108

5.2 Informal Overview of the Split-Ballot Protocol . 109
5.2.1 Shuffling Commitments . 111
5.2.2 Human Capability . 111
5.2.3 Vote Casting Example . 112
5.2.4 The Importance of Rigorous Proofs of Security for Voting Protocols 112

5.3 Underlying Assumptions . 114
5.3.1 Physical Assumptions . 114
5.3.2 Cryptographic Assumptions . 115

5.4 Threat Model and Security . 116
5.4.1 Ideal Voting Functionality . 116
5.4.2 Receipt-Freeness . 117

5.5 Split-Ballot Voting Protocol . 118
5.5.1 Setup . 118
5.5.2 Voting . 119
5.5.3 Tally . 119
5.5.4 Universal Verification and Output . 120
5.5.5 Security Guarantees . 122

5.6 Proof of Accuracy and Privacy Guarantee (Theorem 5.1) . 122
5.6.1 Setup Phase . 124
5.6.2 Voting Phase . 124
5.6.3 Tally Phase . 124
5.6.4 Indistinguishability of the Real and Ideal Worlds . 125

5.7 Proof of Receipt-Freeness (Theorem 5.2) . 130
5.7.1 Indistinguishability of the Real and Ideal Worlds . 130

5.8 Discussion and Open Problems . 131
5.A Homomorphic Commitment and Encryption Over Identical Groups 131

5.A.1 Modified Pedersen . 131
5.A.2 Choosing the Parameters . 132

5.B Zero-Knowledge Proofs of Knowledge . 132

viii CONTENTS

5.B.1 Proof That Two Commitments Are Equivalent . 134
5.B.2 Proof of Commitment Shuffle . 134
5.B.3 Proof that a Committed Value is in Z2k . 135

5.C A Formal Definition of Receipt-Freeness . 135
5.C.1 The Ideal World . 136
5.C.2 The Real World . 137
5.C.3 A Formal Definition of Receipt-Freeness . 137

Chapter 1

Introduction

The 2000 U.S. elections were plagued by highly publicized failures in several voting systems. In response,
election boards across the U.S. replaced mechanical machines and hand-counted ballots with new, electronic
voting machines. However, the result was not necessarily an improvement: in 2007, a panel of cryptography
and security experts was commissioned by California’s Secretary of State to conduct a detailed study of the
voting machines from the three major manufacturers. Their findings led to the decertification of all three
models due to critical security vulnerabilities.

This example highlights three points that motivate my research in general, and underpin the results that
constitute my thesis:

1. Electronic systems are becoming steadily more pervasive elements of our society’s infrastructure, and
thus we are increasingly reliant on their security. While their capabilities and functionality are growing
rapidly, their security is not keeping pace. Moreover, in the “analog” physical world, small errors
usually have minor consequences (e.g., stuffing one ballot box is unlikely to change the outcome of an
election). In the digital realm, on the other hand, a tiny change can have a huge effect (one bad line
of code can change the outcome completely and undetectably).

2. Our intuitions of security for physical systems often fail to hold for digital ones. The electronic voting
machines were originally certified after “rigorous” testing. Their testing included resistance to vibration
and temperature extremes — but missed multiple glaring security holes in the software [74, 12].

3. Modern cryptography gives us tools we can use to deal with the first two points. Secure protocols
have been developed for many tasks, while rigorous definitions and formal proofs of security let us gain
better intuitions for security in the digital world, and relieve us from having to rely entirely on them.

In this thesis, I approach these problems from two related directions. The first is putting everyday objects
in a formal framework, allowing us to construct and rigorously analyze the security of protocols that utilize
them. The second direction, which was also a motivation for the first, is a focus on cryptographic protocols
that explicitly involve humans.

Humans, Computers and Everyday Objects

Until recently, cryptographic protocols were designed with the assumption that the participants in the
protocol can run arbitrary algorithms (as long as they are feasible for a computer). Even if the participants
are actually humans, the ubiquity of cheap computing devices made such an assumption appear reasonable.

However, there is an important distinction between operations a human performs herself and those
performed on her behalf by a computer: a human knows what actions she performed as part of the protocol
(barring inadvertent errors). A computer, on the other hand, is opaque to most users – even for a programmer
it can be difficult to verify that the computer is doing what it is supposed to.

The problem is exemplified by electronic voting machines; voters have no way to check that the machine
actually recorded a vote for the candidate selected by the voter. Indeed, the experience of the U.S. elections

1

2 CHAPTER 1. INTRODUCTION

shows that even when machines were later proven to have recorded votes incorrectly (as determined by
inconsistencies in the final tallies), this was not spotted by voters.

Thus, there is a strong motivation to find cryptographic protocols that are more transparent, and thus
more trustworthy, to their human users. The issue of trust in complex protocols is not a new one, and exists
on two levels. The first is that the protocol itself may be hard to understand, and its security may not
be evident to a layman (even though it may be formally proved). The second is that the computers and
operating system actually implementing the protocol may not be trusted (even though the protocol itself is).

Relying on the properties of everyday objects (such as locks, envelopes or scratch-off cards), is one method
to make protocols intuitive to the “average” user. This is the approach we take in the first part of the thesis
(Chapters 2 and 3). A summary of our results in this area appears in Section 1.1.

For tasks with more complex requirements, such as secure voting, we do not know how to construct
completely transparent protocols that are also (provably) secure. In that case, we would still like to allow
“human verification” of the protocol’s correct implementation combined with a formal proof of security.
Thus, a person can be convinced by the testimony of many independent experts that the protocol is secure,
and can verify herself that the implementation is correct. It is important that the security proof take into
account the fact that humans are involved in the protocol (as this may have security implications). This
is the approach we take in our constructions of verifiable voting protocols, in the second part of the thesis
(Chapters 4 and 5). Section 1.2 contains a summary of our work in this area.

1.1 Basing Protocols on Tamper-Evident Seals

A tamper-evident seal is a primitive based on very intuitive physical models: the sealed envelope and the
locked box. In the cryptographic and popular literature, these are often used as illustrations for a number
of basic cryptographic primitives. For instance, when Alice sends an encrypted message to Bob, she is often
depicted as placing the message in a locked box and sending the box to Bob (who needs the key to read the
message).

Bit commitment, another well known primitive, is usually illustrated using a sealed envelope. In a bit-
commitment protocol one party, Alice, commits to a bit b to Bob in such a way that Bob cannot tell what b
is. At a later time Alice can reveal b, and Bob can verify that this is indeed the bit to which she committed.
The standard illustration used for a bit-commitment protocol is Alice putting b in a sealed envelope, which
she gives to Bob. Bob cannot see through the envelope (so cannot learn b). When Alice reveals her bit, she
lets Bob open the envelope so he can verify that she didn’t cheat.

The problem with the above illustration is that a physical “sealed envelope”, used in the simple manner
described, is insufficient for bit-commitment: Bob can always tear open the envelope before Alice officially
allows him to do so. Even a locked box is unlikely to suffice; many protocols based on bit-commitment
remain secure only if no adversary can ever open the box without a key. A more modest security guarantee
seems to be more easily obtained: an adversary may be able to tear open the envelope but Alice will be able
to recognize this when she sees the envelope again.

“Real” closures with this property are commonly known as “tamper-evident seals”. These are used
widely, from containers for food and medicines to high-security government applications. Another common
application that embodies these properties is the “scratch-off card”, often used as a lottery ticket. This is
usually a printed cardboard card which has some areas coated by an opaque layer (e.g., the possible prizes to
be won are covered). The text under the opaque coating cannot be read without scratching off the coating,
but it is immediately evident that this has been done (so the card issuer can verify that only one possible
prize has been uncovered).

In Chapter 2, we attempt to clarify what it means to use a sealed envelope or locked box in a cryptographic
protocol (a preliminary version of this work appeared in [53]). Our focus is on constructing cryptographic
protocols that use physical tamper-evident seals as their basis.

1.1. BASING PROTOCOLS ON TAMPER-EVIDENT SEALS 3

1.1.1 Seals in Different Flavours

The intuitive definition of a tamper-evident seal does not specify its properties precisely. We consider three
variants of containers with tamper-evident seals. The differences arise from two properties: whether or not
sealed containers can be told apart and whether or not an honest player can break the seal.

Distinguishable vs. Indistinguishable. One possibility is that containers can always be uniquely identified,
even when sealed (e.g., the containers have a serial number engraved on the outside). We call this a
“distinguishable” model. A second possibility is that containers can be distinguished only when open;
all closed containers look alike, no matter who sealed them (this is similar to the paper-envelope voting
model, where the sealed envelopes can’t be told apart). We call this an “indistinguishable” model.

Weak Lock vs. Envelope. The second property can be likened to the difference between an envelope and a
locked box: an envelope is easy to open for anyone. A locked box, on the other hand, may be difficult for an
“honest” player to open without a key, although a dishonest player may know how to break the lock. We
call the former an “envelope” model and the latter a “weak lock” model. Formal definitions for the different
models appear in Section 2.2.

1.1.2 Our Results: Theoretical Foundations

In Chapter 2, we show that tamper-evident seals can be used to implement standard cryptographic protocols.
We construct protocols for some of the most basic cryptographic primitives, formally analyze them and show
separations between the different models of tamper-evident seals.

Basic Cryptographic Primitives. A good intuition for the “cryptographic power” of a new model can be
developed by studying its relation to elemental cryptographic primitives. In our different models for tamper-
evident seals, we study the possibility of implementing coin flipping (CF), zero-knowledge protocols, bit-
commitment (BC) and oblivious transfer (OT), some of the most fundamental primitives in modern cryp-
tography; OT is sufficient by itself for secure function evaluation without additional complexity assumptions
[43, 50]. OT implies bit-commitment, which in turn implies zero-knowledge proofs for any language in
NP [42] and weakly-fair coin flipping (in a weakly-fair coin-flipping protocol an honest player may abort
when it detects the other party cheating) [10]. None of these primitives are possible in the “bare” model
(where adversaries are computationally unbounded and there are no physical assumptions beyond error-free
communication channels).

Formal Analysis. An important contribution of our work is the formal analysis for the models and pro-
tocols we construct. We prove the security of our protocols for CF, BC and OT in Cannetti’s Universal
Composability framework [16]. This allows us to use them securely as “black-boxes” in larger constructions.

On the negative side, we give impossibility results for BC and OT (note that we show the impossibility
of any type of bit-commitment or oblivious transfer, not just universally composable realizations). The
proofs are based on information-theoretic methods: loosely speaking, we show that the sender has too much
information about what the receiver knows. When this is the case, BC is impossible because the sender
can decide in advance what the receiver will accept (so either the receiver knows the committed bit or it is
possible to equivocate), while OT is impossible because the transfer cannot be “oblivious” (the sender knows
how much information the receiver has on each of his bits).

Our results show a separation between the different models of tamper-evident seals and the “bare” model,
summarized in the following table:

Model Possible Impossible
Bare CF, BC, OT

Dist. Weak Locks Coin Flip BC, OT
Dist. Envelopes Coin Flip, Bit-Commitment, OT

Strongly Fair Coin Flip(1/r)
Indist. Weak Locks Coin Flip, Bit-Commitment, Oblivious Transfer ??

Strongly-Fair Coin-Flipping. One significant outcome of our work is a protocol for “strongly-fair” coin-
flipping with optimal bias. In a strongly-fair coin-flipping protocol, the result for an honest player must be

4 CHAPTER 1. INTRODUCTION

either 0 or 1, even if the other player quits before finishing the protocol. In 1986, Cleve showed that in any
r-round coin-flipping protocol (under standard cryptographic assumptions), one of the parties can bias the
result by Ω(1

r) (i.e., cause the honest side to output a specific bit with probability 1
2 + Ω(1

r)) [24]. A careful
reading of [24] shows that this lower bound holds in all three of our tamper-evident seal models as well.

Until recently, however, the best known protocol for coin-flipping allowed one side to bias the results by
Ω(1√

r
). In [53], we construct an r-round coin-flipping protocol in the distinguishable envelope model with

bias bounded by O(1
r) (which is optimal in this model). This protocol was a stepping stone on the way to a

very recent result showing that strongly fair coin-flipping with bias O(1
r) is possible in the standard model

[57]; one of the main ideas in the new protocol, that of using a secret “threshold round”, originated in our
search for a strongly-fair coin-flipping protocol based on tamper-evident seals (see Section 2.4.3). Loosely
speaking, the insight was to determine the outcome of the coin-flip at the threshold round, but let the parties
learn which round was the threshold only after the fact.

Our coin-flipping protocol in the distinguishable envelope model, together with the impossibility proof
for OT, also proves a more general black-box separation between coin-flipping with optimal bias and OT.
This is interesting, because the new protocol for coin-flipping in the standard model [57] makes fundamental
use of oblivious transfer (it relies on secure function evaluation). On the other hand, for a large class of
protocols (including all known coin-flipping protocols that do not require oblivious transfer in the standard
model), an unpublished result of Cleve and Impagliazzo [25] shows that any coin-flipping protocol with r
rounds has at least Ω(1√

r
) bias.

1.1.3 Our Results: Secure Polling Protocols

Polling Schemes. Polling schemes are closely related to voting, but usually have slightly less exacting
requirements. In a polling scheme the purpose of the pollster is to get a good statistical profile of the
responses, however some degree of error is admissible. Unlike voting, absolute secrecy is generally not
a requirement for polling, but some degree of response privacy is often necessary to ensure respondents’
cooperation.

The issue of privacy arises because polls often contain questions whose answers may be incriminating or
stigmatizing (e.g., questions on immigration status, drug use, religion or political beliefs). Even if promised
that the results of the poll will be used anonymously, the accuracy of the poll is strongly linked to the trust
responders place in the pollster. A useful rule of thumb for polling sensitive questions is “better privacy
implies better data”: the more respondents trust that their responses cannot be used against them, the
likelier they are to answer truthfully. Using polling techniques that clearly give privacy guarantees can
significantly increase the accuracy of a poll.

Randomized Response. One of the most well-known ideas is for providing such guarantees is the Randomized
Response Technique (RRT) [75]. A randomized response protocol involves two parties, a pollster and a
responder. The responder has a secret input bit b (this is the true response to the poll question). In the
ideal case, the pollster learns a bit c, which is equal to b with probability p (p is known to the pollster) and
to 1− b with probability 1− p. Since p is known to the pollster, the distribution of responders’ secret inputs
can be easily estimated from the distribution of the pollster’s outputs.

The essential property we require of a Randomized Response protocol is plausible deniability : A responder
should be able to claim that, with reasonable probability, the bit learned by the pollster is not the secret bit
b. This should be the case even if the pollster maliciously deviates from the protocol.

Cryptographic Randomized Response. A Cryptographic Randomized Response (CRRT) protocol is a Ran-
domized Response protocol that satisfies an additional requirement, bounded bias: The probability that
c = b must be at most p, even if the responder maliciously deviates from the protocol. The bounded bias
requirement ensures that malicious responders cannot bias the results of the poll (other than by changing
their own vote).

In Chapter 3, we propose two very simple protocols for cryptographic randomized response polls, based
on tamper-evident seals (a preliminary version of this work appeared in [54]). Our CRRT protocols are
meant to be implemented using physical envelopes (or scratch-off cards) rather than computers. Since the
properties of physical envelopes are intuitively understood, even by a layman, it is easy to verify that the

1.2. HUMAN AWARE VOTING PROTOCOLS 5

implementation is correct. The protocols are also simple enough that the privacy guarantee can be intuitively
understood from the description of the protocol.

Unlike previous works concerning human-implementable protocols, we give a formal definition and a
rigorous proof of security for our protocols. The security is unconditional: it relies only on the physical
tamper-evidence properties of the envelopes, not on any computational assumption. Furthermore, we show
that the protocols are “universally composable”. Using Canetti’s Composition Theorem [16], this implies
that the security guarantees hold even under general concurrent composition (this is important in our polling
scenario, where multiple pollsters and multiple responders may be operating concurrently).

Our protocols implement a relaxed version version of CRRT (called weakly secure in [3]). We also give an
inefficient strong CRRT protocol (that requires a large number of rounds), and give impossibility results and
lower bounds for strong CRRT protocols with a certain range of parameters. These suggest that constructing
a strong CRRT protocol using scratch-off cards may be difficult (or even impossible if we require a constant
number of rounds).

1.2 Human Aware Voting Protocols

A tenet of democracy is that all citizens have an equal voice in their government. The embodiment of this
voice is the election. Thus, it is vitally important that elections be unbiased and fair.

A “perfect” voting protocol must satisfy a long list of requirements. Among the most important are:

Accuracy The final tally must reflect the voters’ wishes.

Privacy A voter’s vote must not be revealed to other parties.

Receipt-Freeness A voter should not be able to prove how she voted (this is important in order to prevent
vote-buying and coercion).

Universal Verifiability Voters should be able to verify that their votes were counted correctly (this helps
increase voters’ trust in the system).

One of the main problems with traditional systems is that the accuracy of the election is entirely depen-
dent on the people who count the votes. In modern systems, this usually consists of fairly small committees:
if an entire committee colludes, they can manufacture their own results. Even worse, depending on the exact
setup, it may be feasible to stuff ballot boxes, destroy votes or perform other manipulations.

The problems with assuring election integrity were a large factor in the introduction of mechanical
voting machines and, more recently, optical scan and “Direct Recording Electronic” (DRE) machines. These
perform a function identical to a ballot box and paper ballots, using a different medium: the basic protocol
remains the same. While alleviating some of the problems (such as ballot stuffing), in some cases they
actually aggravate the main one: instead of relying on a large number of election committees (each of which
has a limited potential for harm), their security relies on a much smaller number of programmers (who may
be able to undetectably change the results of the entire election).

Almost as important as the actual integrity of elections is the citizens’ trust that the outcome accurately
reflects the voters’ intent. This requirement for transparency to humans makes voting protocols a good
proving ground for human-aware cryptography.

1.2.1 Receipt-Free Human Verifiable Voting with Everlasting Privacy

In Chapter 4, we construct a voting scheme that is both receipt-free and universally verifiable even in the
presence of untrusted computers, while providing voters with information-theoretic privacy (a preliminary
version of this work appeared in [55]).

Everlasting Privacy. A voting protocol is said to provide information-theoretic privacy if a computationally
unbounded adversary does not gain any information about individual votes (apart from the final tally). If
the privacy of the votes depends on computational assumptions, we say the protocol provides computational
privacy. Computational assumptions that are true today, however, may not remain so in the near future

6 CHAPTER 1. INTRODUCTION

(e.g., Adi Shamir estimated that existing public-key systems, with key-lengths in use today, will remain
secure for less than thirty years). Thus, protocols that provide computational privacy may not be proof
against coercion: the voter may fear her vote becoming public some time in the future.

While integrity that depends on computational assumptions only requires the assumptions to hold during
the election, privacy that depends on computational assumptions requires them to hold forever. To borrow
a term from Aumann et al. [5], we can say that information-theoretic privacy is everlasting privacy.

To achieve everlasting privacy, our voting protocol is based on statistically-hiding commitment rather
than encryption (this technique is also what gives the protocol of Cramer et al. [27] the same property). We
present a general scheme that can be based on any statistically-hiding string-commitment. In addition, we
give a more efficient scheme based on the hardness of discrete log (that uses Pedersen commitments).

Protocol Construction. Our voting protocol follows the same general outline as Neff’s voting scheme [62]:
it is meant to be implemented in a traditional election setting, where voters cast their ballots in a voting
booth by interacting with a DRE. Whereas in Neff’s scheme the DRE publishes an encryption of the ballot,
in our protocols the DRE publishes a statistically-hiding commitment to the contents of the ballot. As in
Neff’s scheme, the DRE then proves in zero knowledge to the voter that the commitment is to the voter’s
actual choice, while providing fake proofs for all the other candidates. After all votes have been cast, the
DRE announces the final tally and proves in zero-knowledge that the published commitments correspond to
the tally.

As in the case of tamper-evident seals (see Section 1.1), we provide a proof of security in the Universal
Composability (UC) framework.

Formally Defining Receipt-Freeness. One of the significant contributions of this paper is a formal definition
of receipt-freeness in the general multi-party computation setting (we also prove that our protocol satisfies
this definition). Our definition is a generalization of Canetti and Gennaro’s definition for an incoercible
computation [17]. To the best of our knowledge, this is the first definition to capture receipt-freeness in the
general case (most previous papers that deal with receipt-freeness do not provide a formal definition at all).

1.2.2 Split-Ballot Voting: Everlasting Privacy With Distributed Trust

One disadvantage of the voting scheme in Chapter 4 is that the privacy of the election has a single point of
failure: the DRE knows all the votes, and if it is corrupt we can no longer ensure secrecy. The common way
to solve this is by using a small number of trustees instead of a single authority. In most of the electronic
voting schemes, it is enough that one of trustees remain uncorrupted. Because we use commitment instead
of encryption, the standard mix techniques for sharing the trust between multiple authorities do not work.

In Chapter 5, we propose a new voting protocol that overcomes this problem (a preliminary version
of this work appears in [56]). Our new protocol, which we call the “split-ballot” voting protocol, is also
universally-verifiable, receipt-free and provides everlasting privacy for individual votes. In contrast to our
previous protocol, in the split-ballot protocol the information about the votes is split between two separate
voting authorities.

The Challenge. What makes this difficult is that the voting authorities must receive information about
the votes in order to perform the tally (since we do not require voters to actively participate in tallying).
Thus, everlasting privacy seems impossible to achieve in this setting. We sidestep the problem by relaxing
the requirements slightly: we require the public information (the information used to verify the tally) to be
information-theoretically hiding, but allow the data seen by the voting authorities to be only computationally
hiding.

The security of the scheme degrades gracefully when authorities are corrupted: accuracy is guaranteed
even if both authorities are malicious and colluding, computational privacy is guaranteed as long as one of
the authorities is honest, and both everlasting privacy and receipt-freeness are guaranteed if both authorities
are honest.

Splitting the Ballot. In order to prevent either voting authority from learning the voter’s choice, the voter
must perform what amounts to computing shares of her choice using a secret-sharing scheme (each voting
authority receives a share). Although trivial for a computer, we require this computation to be feasible for

1.2. HUMAN AWARE VOTING PROTOCOLS 7

the “average voter”. Hence, the user interface is extremely important.
The user interface for the “split-ballot” voting protocol was inspired by the Punchscan voting scheme

[22]. Like Punchscan, the split-ballot voting protocol uses pre-printed paper ballots and does not require
a computer for ballot casting. Ballots are composed of three separate pages: a standard (bottom) page
that is marked by the voter and later used as the ballot, and two (top) pages containing secret information
(one from each voting authority). When the pages are stacked, the information on the top pages tells the
voter where to mark the bottom page in order to vote for her candidate. The voter then destroys the secret
information in the top pages (e.g., by shredding them), and exits the polling booth with the bottom page.

By combining the mark on the bottom page with the secret information on the top page it sent, each
authority can compute its secret share of the voter’s choice. Note that the secret sharing operation is implicit
in the ballot construction — the voter is never required to explicitly perform “a computation”. Without the
secret information, the marks on the bottom page reveal nothing about the voter’s choice; the fact that the
voter can lie about the secret information on the pages she destroyed gives us receipt-freeness.

We formally prove the security of the protocol in the Universal Composability framework, based on
number-theoretic assumptions. Interestingly, we prove that the protocol is secure in the UC framework even
though the underlying commitment and encryption schemes are not universally composable. We also show
our protocol is receipt-free (under the simulation-based definition from Chapter 4).

An additional result in this paper (that affirms the importance of rigorous definitions for receipt-freeness)
is an explicit vote-buying attack against Punchscan [22] (one of the “competing” voting schemes). This attack
is possible even though the scheme is incoercible by Canetti and Gennaro’s definition.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Basing Cryptographic Protocols on
Tamper-Evident Seals

2.1 Introduction

In this paper we consider the use of “tamper-evident seals” in cryptographic protocols. A tamper-evident
seal is a primitive based on very intuitive physical models: the sealed envelope and the locked box. In the
cryptographic and popular literature, these are often used as illustrations for a number of basic cryptographic
primitives. For instance, when Alice sends an encrypted message to Bob, she is often depicted as placing
the message in a locked box and sending the box to Bob (who needs the key to read the message).

Bit commitment, another well known primitive, is usually illustrated using a sealed envelope. In a bit-
commitment protocol one party, Alice, commits to a bit b to Bob in such a way that Bob cannot tell what b
is. At a later time Alice can reveal b, and Bob can verify that this is indeed the bit to which she committed.
The standard illustration used for a bit-commitment protocol is Alice putting b in a sealed envelope, which
she gives to Bob. Bob cannot see through the envelope (so cannot learn b). When Alice reveals her bit, she
lets Bob open the envelope so he can verify that she didn’t cheat.

The problem with the above illustration is that a physical “sealed envelope”, used in the simple manner
described, is insufficient for bit-commitment: Bob can always tear open the envelope before Alice officially
allows him to do so. Even a locked box is unlikely to suffice; many protocols based on bit-commitment
remain secure only if no adversary can ever open the box without a key. A more modest security guarantee
seems to be more easily obtained: an adversary may be able to tear open the envelope but Alice will be able
to recognize this when she sees the envelope again.

“Real” closures with this property are commonly known as “tamper evident seals”. These are used
widely, from containers for food and medicines to high-security government applications. Another common
application that embodies these properties is the “scratch-off card”, often used as a lottery ticket. This is
usually a printed cardboard card which has some areas coated by an opaque layer (e.g., the possible prizes to
be won are covered). The text under the opaque coating cannot be read without scratching off the coating,
but it is immediately evident that this has been done (so the card issuer can verify that only one possible
prize has been uncovered).

In this paper we attempt to clarify what it means to use a sealed envelope or locked box in a crypto-
graphic protocol. Our focus is on constructing cryptographic protocols that use physical tamper-evident seals
as their basis. In particular, we study their applicability to coin flipping (CF), zero-knowledge protocols, bit
commitment (BC) and oblivious transfer (OT), some of the most fundamental primitives in modern cryp-
tography; Oblivious transfer is sufficient by itself for secure function evaluation [43, 50] without additional
complexity assumptions. Oblivious transfer implies bit-commitment, which in turn implies zero-knowledge
proofs for any language in NP [42] and (weakly-fair) coin flipping [10].

Note that encryption is very simple to implement using tamper-evident containers (given authenticated
channels), which is why we do not discuss in depth in this paper. For example, Alice and Bob can agree

9

10 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

on a secret key by sending random bits in sealed containers. A bit in a container that arrives unopened is
guaranteed (by the tamper-evidence property) to be completely unknown to the adversary. The case where
only the creator of a container can tell whether it has been opened requires only slightly more complex
protocols.

2.1.1 Seals in Different Flavours

The intuitive definition of a tamper-evident seal does not specify its properties precisely. In this paper, we
consider three variants of containers with tamper-evident seals. The differences arise from two properties:
whether or not sealed containers can be told apart and whether or not an honest player can break the seal.

Distinguishable vs. Indistinguishable One possibility is that containers can always be uniquely iden-
tified, even when sealed (e.g., the containers have a serial number engraved on the outside). We call this a
“distinguishable” model. A second possibility is that containers can be distinguished only when open; all
closed containers look alike, no matter who sealed them (this is similar to the paper-envelope voting model,
where the sealed envelopes can’t be told apart). We call this an “indistinguishable” model.

Weak Lock vs. Envelope The second property can be likened to the difference between an envelope
and a locked box: an envelope is easy to open for anyone. A locked box, on the other hand, may be difficult
for an “honest” player to open without a key, although a dishonest player may know how to break the lock.
We call the former an “envelope” model and the latter a “weak lock” model. In Section 2.2 we give formal
definitions for the different models.

Any envelope model is clearly stronger than the corresponding weak-lock model (since in the envelope
model the honest player is more powerful, while the adversary remains the same). We show that there
are protocols that can be implemented in the indistinguishable models that cannot be realized in any of
the distinguishable models. It is not clear however, that any indistinguishable model is strictly stronger
than any distinguishable model. Although all four combinations are possible, the indistinguishable envelope
model does not appear significantly stronger than the indistinguishable weak lock model, and in this paper
we discuss only the latter. Note that in the standard model of cryptography, where the parties exchange
messages and there is no access to outside physical resources, we do not know how to implement any of these
closures.

Additional Variants The definitions of tamper-evident seals we consider in this paper are by no means
the only possible ones. They do, however, represent a fairly weak set of requirements for a physical imple-
mentation. In particular, we don’t require the containers to be unforgeable by their creator (this relaxation
is captured by allowing the creator of the container to change its contents and reseal it).

2.1.2 Our Results

In this paper we show that tamper-evident seals can be used to implement standard cryptographic protocols.
We construct protocols for “weakly-fair” coin flipping (in which the result is 0, 1 or invalid), bit-commitment
and oblivious transfer using tamper-evident seals as primitives.

A possibly practical application of our model is the “cryptographic randomized response technique”
(CRRT), defined by Ambainis et al. [3]. “Randomized response” is a polling technique used when some of
the answers to the poll may be stigmatizing (e.g., “do you use drugs?”). The respondent lies with some known
probability, allowing statistical analysis of the results while letting the respondent disavow a stigmatizing
response. In a CRRT, there is the additional requirement that a malicious respondent cannot bias the results
more than by choosing a different answer. The techniques described by Ambainis et al. achieve this, but
require “heavy” cryptographic machinery (such as OT), or quantum cryptography. In a follow-up paper [54],
we show a simple protocol for CRRT using scratch-off cards.

One of the most interesting results is a protocol for “strongly-fair” coin flipping (where the result for an
honest player must be either 0 or 1 even if the other player quits before finishing the protocol) with bias

2.1. INTRODUCTION 11

bounded by O(1
r), where r is the number of rounds. This protocol was a stepping-stone to the subsequent

construction of an optimal protocol for strongly-fair coin flipping in the standard model [57].
An important contribution of this paper is the formal analysis for the models and protocols we construct.

We show that the protocols are Universally Composable in the sense of Canetti [16]. This allows us to use
them securely as “black-boxes” in larger constructions.

On the negative side, we show that our protocol for strongly-fair CF using sealed envelopes is optimal: it
is impossible to do better than O(1

r) bias (this follows from a careful reading of the proof in [24]). We also
give impossibility results for BC and OT (note that we show the impossibility of any type of bit-commitment
or oblivious transfer, not just universally composable realizations). The proofs are based on information-
theoretic methods: loosely speaking, we show that the sender has too much information about what the
receiver knows. When this is the case, BC is impossible because the sender can decide in advance what the
reciever will accept (so either the reciever knows the committed bit or it is possible to equivocate), while
OT is impossible because the transfer cannot be “oblivious” (the sender knows how much information the
receiver has on each of his bits).

Our results show a separation between the different models of tamper-evident seals and the “bare” model,
summarized in the following table:

Model Possible Impossible
Bare CF, BC, OT

Dist. Weak Locks Coin Flip BC, OT
Dist. Envelopes Coin Flip, Bit-Commitment, OT

Strongly-Fair Coin Flip(1/r)
Indist. Weak Locks Coin Flip, Bit-Commitment, ??

Oblivious Transfer

2.1.3 Related Work

To the best of our knowledge, this is the first attempt at using tamper evident seals for cryptographic
protocols. Ross Anderson discusses “packaging and seals” in the context of security engineering [4], however
the use of tamper-evidence does not extend to more complex protocols. Blaze gives some examples of the
reverse side of the problem: cryptanalysis of physical security systems using techniques from computer
science [8, 9]. Using scratch-off cards in the lottery setting can be described as a very weak form of CF,
however we do not believe this has ever been formally analyzed (or used in more complex protocols).

On the other hand, basing cryptographic protocols on physical models is a common practice. Perhaps
the most striking example is the field of quantum cryptography, where the physics of quantum mechanics are
used to implement cryptographic operations – some of which are impossible in the “bare” model. One of the
inspirations for this work was the idea of “Quantum Bit Escrow” (QBE) [2], a primitive that is very similar
to a tamper-evident seal and that can be implemented in a quantum setting. There are, however, significant
differences between our definitions of tamper-evident seals and QBE. In particular, in QBE the adversary
may “entangle” separate escrowed bits and “partially open” commitments. Thus, while unconditionally
secure bit-commitment is impossible in the pure quantum setting [52, 51], it is possible in ours.

Much work has been done on basing BC and OT on the physical properties of communication channels,
using the random noise in a communication channel as the basis for security. Both BC and OT were shown
to be realizable in the Binary Symmetric Channel model [30, 29], in which random noise is added to the
channel in both directions with some known, constant, probability. Later work shows that they can also be
implemented, under certain conditions, in the weaker (but more convincing) Unfair Noisy Channel model
[34, 32], where the error probability is not known exactly to the honest parties, and furthermore can be
influenced by the adversary. Our construction for 1-2 OT uses some of the techniques and results from [34].

One of the motivations for this work was the attempt to construct cryptographic protocols that are
implementable by humans without the aid of computers. This property is useful, for example, in situations
where computers cannot be trusted to be running the protocol they claim, or where “transparency” to
humans is a requirement (such as in voting protocols). Many other examples exist of using simple physical
objects as a basis for cryptographic protocols that can be performed by humans, some are even folklore: Sarah
Flannery [39] recounts a childhood riddle that uses a doubly-locked box to transfer a diamond between two

12 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

parties, overcoming the corrupt postal system (which opens any unlocked boxes) despite the fact that the
two parties have never met (and can only communicate through the mail). Fagin, Naor and Winkler [38]
assembled a number of solutions to the problem of comparing secret information without revealing anything
but the result of the comparison using a variety of different physical methods. Schneier devised a cipher [70]
that can be implemented by a human using a pack of cards. In a lighter vein, Naor, Naor and Reingold [59]
give a protocol that provides a “zero knowledge proof of knowledge” of the correct answer to the children’s
puzzle “Where’s Waldo” using only a large newspaper and scissors. A common thread in these works is that
they lack a formal specification of the model they use, and a formal proof of security.

2.1.4 Organization of the Paper

In Section 2.2, we give formal definitions for the different models of tamper-evident seals and the function-
alities we attempt to realize using them. In Section 2.3 we discuss the capabilities of the Distinguishable
Weak Lock model, show that bit-commitment is impossible in this model and give a protocol for weakly-fair
coin-flipping. In Section 2.4 we discuss the capabilities of the Distinguishable Envelope model, showing that
OT is impossible and giving protocols for BC and strongly-fair CF with bias 1/r. Section 2.5 contains a
discussion of the indistinguishable weak lock model and a protocol for oblivious transfer in this model. The
proofs of security for the protocols we describe are given in Sections 2.6,2.8.1,2.7,2.9 and 2.10. The proofs
are fairly technical, and can be skipped on first reading. Section 2.11 contains the discussion and some open
problems.

2.2 The Model: Ideal Functionalities

2.2.1 Ideal Functionalities and the UC Framework

Many two-party functionalities are easy to implement using a trusted third party that follows pre-agreed
rules. In proving that a two-party protocol is secure, we often want to say that it behaves “as if it were
performed using the trusted third party”. A formalization of this idea is the “Universally Composable”
model defined by Canetti [16].

In the UC model, the trusted third party is called the ideal functionality. The ideal functionality is de-
scribed by a program (formally, it is an interactive Turing machine) that can communicate by authenticated,
private channels with the participants of the protocol.

The notion of security in the UC model is based on simulation: a protocol securely realizes an ideal
functionality in the UC model if any attack on the protocol in the “real” world, where no trusted third party
exists, can be performed against the ideal functionality with the same results. Attacks in the ideal world
are carried out by an “ideal adversary”, that can also communicate privately with the functionality. The
ideal adversary can corrupt honest parties by sending a special Corrupt command to the functionality, at
which point the adversary assumes full control of the corrupted party. This allows the functionality to act
differently depending on which of the parties are corrupted. Additional capabilities of the adversary are
explicitly defined by the ideal functionality.

Proving protocol security in the UC model provides two main benefits: First, the functionality definition
is an intuitive way to describe the desired properties of a protocol. Second (and the original motivation for
the definition of the UC model), protocols that are secure in the UC have very strong security properties,
such as security under composition and security that is retained when the protocol is used as a sub-protocol
to replace an ideal functionality. This security guarantee allows us to simplify many of our proofs, by showing
separately the security of their component sub-protocols.

Note that our impossibility results are not specific to the UC model: the impossibility results for bit-
commitment (Section 2.3.3), oblivious transfer (Section 2.4.1) and the lower bound for strongly-fair coin
flipping (Section 2.4.4) hold even for the weaker “standard” notions of these functionalities.

In this section we formally define the different models for tamper-evident seals in terms of their ideal
functionalities. For completeness, we also give the definitions of the primitives we are trying to implement
(CF, BC and OT). We restrict ourselves to the two-party case, and to adversaries that decide at the beginning
of the protocol whether to corrupt one of the parties or neither.

2.2. THE MODEL: IDEAL FUNCTIONALITIES 13

For readability, we make a few compromises in strict formality when describing the functionalities. First,
the description is in natural language rather than pseudocode. Second, we implicitly assume the following
for all the descriptions:

• All functionalities (unless explicitly specified) have a Halt command that can be given by the adversary
at any time. When a functionality receives this command, it outputs ⊥ to all parties. The functionality
then halts (ignoring further commands). In a two party protocol, this is equivalent to a party halting
prematurely.

• When a functionality receives an invalid command (one that does not exist or is improperly formatted),
it proceeds as if it received the Halt command.

• When we say that the functionality “verifies” some condition, we mean that if the condition does not
hold, the functionality proceeds as if it received the Halt command.

2.2.2 Tamper-Evident Seals

These are the functionalities on which we base the protocols we describe in the paper. In succeeding
sections, we assume we are given one of these functionalities and attempt to construct a protocol for a
“target” functionality (these are described in Section 2.2.3).

Distinguishable Weak Locks

This functionality models a tamper-evident container that has a “weak lock”: an honest party requires
a key to open the container, but the adversary can break the lock without help. Functionality F (DWL)

contains an internal table that consists of tuples of the form (id, value, creator, holder, state). The table
represents the state and location of the tamper-evident containers. It contains one entry for each existing
container, indexed by the container’s id and creator. We denote valueid, creatorid, holderid and stateid the
corresponding values in the table in row id (assuming the row exists). The table is initially empty. The
functionality is described as follows, running with parties P1, . . . , Pn and ideal adversary I:

Seal (id, value) This command creates and seals a container. On receiving this command from party Pi,
the functionality verifies that id has the form (Pi, {0, 1}∗) (this form of id is a technical detail to ensure
that ids are local to each party). If this is the first Seal message with id id, the functionality stores
the tuple (id, value, Pi, Pi, sealed) in the table. If this is not the first Seal with id id, it verifies that
creatorid = holderid = Pi and, if so, replaces the entry in the table with (id, value, Pi, Pi, sealed).

Send (id, Pj) On receiving this command from party Pi, the functionality verifies that an entry for container
id appears in the table and that holderid = Pi. If so, it outputs (Receipt, id, creatorid, Pi, Pj) to Pj
and I and replaces the entry in the table with (id, valueid, creatorid, Pj , stateid).

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table, that holderid = Pi and that either Pi is corrupted or stateid = unlocked. It then sends
(Opened, id, valueid, creatorid) to Pi. If stateid 6= unlocked it replaces the entry in the table with
(id, valueid, creatorid, holderid,broken).

Verify id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table and that holderid = Pi. It then considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi. Otherwise, it sends (Verified, id,ok) to Pi.

Unlock id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table, that creatorid = Pi and that stateid = sealed. If so, it replaces the entry in the
table with (id, valueid, creatorid, holderid,unlocked) and sends (Unlocked, id) to holderid.

14 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Distinguishable Envelopes

Functionality F (DE) models a tamper-evident “envelope”: in this case honest parties can open the envelope
without need for a key (although the opening will be evident to the envelope’s creator if the envelope is
returned). This functionality is almost exactly identical to F (DWL), except the Open command allows
anyone holding the container to open it. The functionality description is identical to F (DWL), except that
the new handling of the Open command is:

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table and that holderid = Pi. It sends (Opened, id, valueid, creatorid) to Pi. It also replaces
the entry in the table with (id, valueid, creatorid, holderid,broken).

The Unlock command is now irrelevant, but still supported to make it clear that this model is strictly
stronger than the weak lock model.

Indistinguishable Weak Locks

This functionality models tamper-evident containers with “weak locks” that are indistinguishable from the
outside. The indistinguishability is captured by allowing the players to shuffle the containers in their posses-
sion using an additional Exchange command. To capture the fact that the indistinguishability applies only
to sealed containers, the internal table contains an addition column: sid, the “sealed id”. This is a unique id
that is shuffled along with the rest of the container contents and is revealed when the container is opened1

Functionality F (IWL) can be described as follows, running with parties P1, . . . , Pn and adversary I:

Seal (id, sid, value) This command creates and seals a container. On receiving this command from party
Pi, the functionality verifies that id and sid have the form (Pi, {0, 1}∗).

Case 1: This is the first Seal message with id id and sid sid. In this case the functionality stores the tuple
(id, sid, value, Pi, Pi, sealed) in the table.

Case 2: This is the first Seal message with sid sid but id has been used before. In this case, the functionality
verifies that holderid = Pi. It then replaces the entry in the table with (id, sid, value, Pi, Pi, sealed).

Case 3: This is the first Seal message with id id but sid has been used before. In this case the functionality
proceeds as if it has received the Halt command.

Send (id, Pj) On receiving this command from party Pi, the functionality verifies that an entry for container
id appears in the table and that holderid = Pi. If so, it sends (Receipt, id, Pi, Pj) to Pj and I and
replaces the entry in the table with (id, sidid, valueid, creatorid, Pj , stateid).

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table, that holderid = Pi and that either Pi is corrupted or stateid = unlocked. It then sends
(Opened, id, sidid, valueid, creatorid) to Pi. If stateid 6= unlocked it replaces the entry in the table
with (id, sidid, valueid, creatorid, ownerid, broken).

Verify id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table and that holderid = Pi. It then considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi. Otherwise, it sends (Verified, id,ok) to Pi.

Unlock sid On receiving this command from Pi, the functionality verifies that an entry exists in the table
for which sidid = sid, that creatorid = Pi. If stateid = sealed, it replaces the entry in the table
with (id, sidid, valueid, creatorid, holderid, unlocked). Otherwise, it does nothing. Note that this
command does not send any messages (so it cannot be used to determine who is holding a container).

Exchange (id1, id2) On receiving this command from Pi the functionality verifies that both id1 and id2

exist in the table, and that holderid1 = holderid2 = Pi. It then exchanges the two table rows; the
tuples in the table are replaced with (id2, sidid1 , valueid1 , creatorid1 , Pi, stateid1) and (id1, sidid2 ,
valueid2 , creatorid2 , Pi, stateid2).

1Technically, the sid can be used to encode more than a single bit in a container. We do not make use of this property in
any of our protocols, but changing the definition to eliminate it would make it unduly cumbersome.

2.2. THE MODEL: IDEAL FUNCTIONALITIES 15

A Note About Notation In the interests of readability, we will often refer to parties “preparing” a
container or envelope instead of specifying that they send a Seal message to the appropriate functionality.
Likewise we say a party “verifies that a container is sealed” when the party sends a Verify message to the
functionality, waits for the response and checks that the resulting Verified message specifies an ok status.
We say a party “opens a container” when it sends an Open message to the functionality and waits for the
Opened response. We say the party “shuffles” a set of containers according to some permutation (in the
indistinguishable model) when it uses the appropriate Exchange messages to apply the permutation to the
containers’ ids.

2.2.3 Target Functionalities

These are the “standard” functionalities we attempt to implement using the tamper-evident seals.

Weakly-Fair Coin Flipping

This functionality models coin flipping in which the result of the coin flip can be 0, 1 or ⊥. The result of
the flip c should satisfy: Pr[c = 0] ≤ 1

2 and Pr[c = 1] ≤ 1
2 . This is usually what is meant when talking about

“coin flipping” (for instance, in Blum’s “Coin Flipping Over the Telephone” protocol [10]). The ⊥ result
corresponds to the case where one of the parties noticeably deviated from (or prematurely aborted) the
protocol. Under standard cryptographic assumptions (such as the existence of one-way functions), weakly-
fair coin flipping is possible. Conversely, in the standard model the existence of weakly-fair coin flipping
implies one-way functions [46].

Functionality F (WCF) is described as follows, with parties Alice and Bob and adversary I:

Value The sender of this command is Alice (the other party is Bob). When this command is received, the
functionality chooses a uniform value d ∈ {0, 1}. If one of the parties is corrupted, the functionality
outputs (Approve, d) to I (the adversary). In that case, the functionality ignores all input until
it receives either a Continue command or a Halt command from I. If no party is corrupted, the
functionality proceeds as if I had sent a Continue command.

Halt When this command is received from I (in response to an Approve message) the functionality outputs
⊥ to all parties and halts.

Continue When this command is received from I (in response to an Approve message), the functionality
outputs (Coin, d) to all parties and halts.

Note: if only one of the parties can cheat in the coin flip, we say the coin flip has one-sided error.

Strongly-Fair Coin Flipping with Bias p.

This functionality (adapted from [16]) models a coin flip between two parties with a bounded bias. If both
parties follow the protocol, they output an identical uniformly chosen bit. Even if one party does not follow
the protocol, the other party outputs a random bit d that satisfies: |Pr[d = 0]− Pr[d = 1]| ≤ 2p. Note that
we explicitly deal with premature halting; the standard Halt command is not present in this functionality.

Functionality F (SCF) is described as follows:

Value When this command is received for the first time from any party, F (SCF) chooses a bit b, such
that b = 1 with probability p and 0 with probability 1 − p (this bit signifies whether it will allow
the adversary to set the result). If b = 1, the functionality sends the message ChooseValue to I.
Otherwise, it chooses a random bit d ∈ {0, 1} and outputs (Coin, d) to all parties and to I. If this
command is sent more than once, all invocations but the first are ignored.

Bias d When this command is received, the functionality verifies that the sender is corrupt, that the Value
command was previously sent by one of the parties and that b = 1 (if any of these conditions are not
met, the command is ignored). The functionality then outputs (Coin, d) to all parties.

16 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Bit Commitment

Functionality F (BC) (adapted from [16]) can be described as follows:

Commit b The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records b and outputs Committed to the receiver. It then ignores
any other commands until it receives the Open command from the sender.

Open On receiving this command from the sender, the functionality outputs (Opened, b) to the receiver.

Oblivious Transfer

Functionality F (OT) (taken from [32]) is as follows:

Send (b0, b1) The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records (b0, b1) and outputs QueryChoice to the receiver. It then
ignores all other commands until it receives a Choice command from the receiver

Choice c On receiving this command from the receiver, the functionality verifies that c ∈ {0, 1}. It then
sends bc to the receiver.

2.2.4 Intermediate Functionalities

In order to simplify the presentation, in the following sections we will present protocols that realize func-
tionalities that are slightly weaker than the ones we want. We then use standard amplification techniques to
construct the “full” functionalities from their weak version. In this section we define these intermediate func-
tionalities and state the amplification lemmas we use to construct the stronger versions of these primitives.
These definitions are in the spirit of [34].

p-Weak Bit-Commitment

This functionality models bit-commitment where a corrupt receiver can cheat with probability p. Note
that an ε-WBC protocol is a regular bit-commitment protocol when ε is negligible. Formally, functionality
F (p−WBC) proceeds as follows:

Commit b The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records b and outputs Committed to the receiver. It ignores any
additional Commit commands.

Open b On receiving this command from the sender, the functionality verifies that the sender previously
sent a Commit b command. If so, the functionality outputs (Opened, b) to the receiver.

Break On receiving this command from a corrupt receiver, the functionality verifies that the sender previ-
ously sent a Commit b command. With probability p it sends (Broken, b) to the receiver and with
probability 1− p it sends ⊥ to the receiver. Additional Break commands are ignored.

The following theorem allows us to amplify any p-WBC protocol when p < 1, meaning that the existence
of such a protocol implies the existence of regular bit-commitment.

Theorem 2.1. For any p < 1 and ε > 0, there exists a protocol that realizes F (ε−WBC) using O
(
log
(

1
ε

))
instances of F (p−WBC)

The proof for this theorem is given in Section 2.9.3.

2.2. THE MODEL: IDEAL FUNCTIONALITIES 17

p-Remotely Inspectable Seal

This functionality is used in our protocol for strongly-fair CF. It is a strengthened version of a tamper-
evident seal. With a tamper-evident seal, only its holder can interact with it. Thus, either the sender can
check if it was opened, or the receiver can verify that the sealed contents were not changed, but not both
at the same time. A remotely inspectable seal is one that can be tested “remotely” (without returning it
to the sender). Unfortunately, we cannot realize this “perfect” version in the DE model, therefore relax it
somewhat: we allow a corrupt receiver to learn the committed bit during the verification process and only
then decide (assuming he did not previously break the seal) whether or not the verification should succeed.
Our definition is actually a further relaxation2: the receiver may cheat with some probability: A corrupt
receiver who opens the commitment before the verify stage will be caught with probability 1− p.

Formally, the functionality maintains an internal state variable v = (vb, vs) consisting of the committed
bit vb and a “seal” flag vs. It accepts the commands:

Commit b The issuer of this command is called the sender, the other party is the receiver. b can be either
0, 1. The functionality sets v ← (b, sealed). The functionality outputs Committed to the receiver
and ignores any subsequent Commit commands.

Open This command is sent by the receiver. The functionality outputs (Opened, vb) to the receiver. If
vs = sealed, with probability 1− p the functionality sets vs ← open

Verify If vs 6= sealed, the functionality outputs (Verifying,⊥) to the receiver and ⊥ to the sender.
Otherwise (no opening was detected), the functionality outputs (Verifying, vb) to the receiver. If
the receiver is corrupt, the functionality waits for a response. If the adversary responds with ok, the
functionality outputs Sealed to the sender, otherwise it outputs ⊥ to the sender. If the receiver is
not corrupt, the functionality behaves as if the adversary had responded with ok. After receiving this
command from the sender (and responding appropriately), the functionality ignores any subsequent
Verify and Open commands.

We call 0-RIS simply “RIS”. When εis negligible, ε-RIS is statistically indistinguishable from RIS. The
following theorem states that a p-RIS functionality can be amplified for any p < 1 to get RIS:

Theorem 2.2. For any p < 1 and ε > 0, there exists a protocol that realizes F (RIS) using O
(
log
(

1
ε

))
instances of F (p−RIS)

The proof for this theorem appears in Section 2.8.2.

Possibly Cheating Weak Oblivious Transfer

The ideal functionality for WOT is defined in [34]. Loosely, a (p, q)-WOT protocol is a 1-2 OT protocol in
which a corrupt sender gains extra information and can learn the receiver’s bit with probability at most p,
while a corrupt receiver gains information that allows it to learn the sender’s bit with probability at most q.
Here we define a very similar functionality, (p, q)-Possibly-Cheating Weak Oblivious Transfer

This functionality differs from WOT in two ways: First, a corrupt sender or receiver learns whether or not
cheating will be successful before committing to their bits. Second, a corrupt sender that cheats successfully
is not committed to her bits — the sender can choose which bit the receiver will receive as a function of the
receiver’s bit.

Formally, functionality F (p,q−PCWOT) proceeds as follows:

CanCheat When this command is first received the functionality chooses a uniformly random number
x ∈ [0, 1] and records this number. x is returned to the issuer of the command and further CanCheat
commands are ignored. This command can only be sent by a corrupt party.

2This second relaxation is only for convenience; we can remove it using amplification as noted in Theorem 2.2

18 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Send (b0, b1) The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records (b0, b1) and outputs QueryChoice to the receiver. If the
receiver is corrupt and x < q it also outputs (Broken, b0, b1) to the receiver. It then ignores all other
commands until it receives a Choice command from the receiver

Choice c On receiving this command from the receiver, the functionality verifies that c ∈ {0, 1}. If the
sender is corrupt and x < p, it sends (Broken, c) to the sender and waits for a Resend command.
Otherwise, it sends bc to the receiver. Any further Choice commands are ignored.

Resend b On receiving this command from a corrupt sender, and if x < p, the functionality sends b to the
receiver.

In [34], Damg̊ard et al. prove that (p, q)-WOT implies OT iff p+ q < 1. A careful reading of their proof
shows that this is also the case for (p, q)-PCWOT, giving the following result:

Theorem 2.3. For any p + q < 1 and any ε > 0, there exists a protocol that realizes F (ε,ε−PCWOT) using
O
(
log2

(
1
ε

))
instances of F (p,q−PCWOT).

2.2.5 Proofs in the UC Model

Formally, the UC model defines two “worlds”, which should be indistinguishable to an outside observer called
the “environment machine” (denoted Z).

The “ideal world” contains two “dummy” parties, the “target” ideal functionality, Z and an “ideal
adversary”, I. The parties in this world are “dummy” parties because they pass any input they receive
directly to the target ideal functionality, and write anything received from the ideal functionality to their
local output. I can communicate with Z and the ideal functionality, and can corrupt one of the parties. I
sees the input and any communication sent to the corrupted party, and can control the output of that party.
The environment machine, Z, can set the inputs to the parties and read their local outputs, but cannot see
the communication with the ideal functionality.

The “real world” contains two “real” parties, Z and a “real adversary”, A. In addition it may contain the
“service” ideal functionalities (in our case the distinguishable envelope functionality). A can communicate
with Z and the “service” ideal functionalities, and can corrupt one of the parties. The uncorrupted parties
follow the protocol, while corrupted parties are completely controlled by A. As in the ideal world, Z can set
the inputs for the parties and see their outputs, but not internal communication (other than what is known
to the adversary).

The protocol securely realizes an ideal functionality in the UC model, if there exists I such that for any
Z and A, Z cannot distinguish between the ideal world and the real world. Our proofs of security follow the
general outline for a proof typical of the UC model: we describe the ideal adversary, I, that “lives” in the
ideal world. Internally, I simulates the execution of the “real” adversary, A. We can assume w.l.o.g. that
A is simply a proxy for Z, sending any commands received from the environment to the appropriate party
and relaying any communication from the parties back to the environment machine. I simulates the “real
world” for A, in such a way that Z cannot distinguish between the ideal world when it is talking to I and
the real world. In our case we will show that Z’s view of the execution is not only indistinguishable, but
actually identical in both cases.

All the ideal adversaries used in our proofs have, roughly, the same idea. They contain a “black-box”
simulation of the real adversary, intercepting its communication with the tamper-evident container function-
alities and replacing it with a simulated interaction with simulated tamper-evident containers. The main
problem in simulating a session that is indistinguishable from the real world is that the ideal adversary does
not have access to honest parties’ inputs, and so cannot just simulate the honest parties. Instead, the ideal
adversary makes use of the fact that in the ideal world the “tamper-evident seals” are simulated, giving it
two tools that are not available in the real world:

First, the ideal adversary does not need to commit in advance to the contents of containers (it can decide
what the contents are at the time they are opened), since, in the real world, the contents of a container don’t
affect the view until the moment it is opened.

2.3. CAPABILITIES OF THE DISTINGUISHABLE WEAK-LOCK MODEL 19

Second, the ideal adversary knows exactly what the real adversary is doing with the simulated containers
at the time the real adversary performs the action, since any commands sent by the real adversary to the
simulated tamper-evident container functionality are actually received by the ideal adversary. This means
the ideal adversary knows when the real adversary is cheating. The target functionalities, when they allow
cheating, fail completely if successful cheating gives the corrupt party “illegal” information: in case cheating
is successful they give the adversary the entire input of the honest party. Thus, the strategy used by the
ideal adversary is to attempt to cheat (by sending a command to the target ideal functionality) when it
detects the real adversary cheating. If it succeeds, it can simulate the rest of the protocol identically to a
real honest party (since it now has all the information it needs). If it fails to cheat, the ideal adversary uses
its “inside” information to cause the real adversary to be “caught” in the simulation.

2.3 Capabilities of the Distinguishable Weak-Lock Model

This is the weakest of the four primitives we consider. We show that unconditionally secure bit commitment
and oblivious transfer are impossible in this model. However, this model is still strictly stronger than the
bare model, as weak coin flipping is possible in this model.

2.3.1 A Weakly-Fair Coin Flipping Protocol

We give a protocol that securely realizes F (WCF) using calls to F (DWL). Here Alice learns the result of the
coin flip first. Note that when this protocol is implemented in the Distinguishable Envelope Model, a trivial
change allows it to have one-sided error (only Bob can cheat). In this case, Bob learns the result of the coin
flip first.

Protocol 2.1 (WCF).

1. Alice prepares and sends to Bob 4n containers arranged in quads. Each quad contains two containers
with the value 0 and two with the value 1. The order of the 0s and 1s within the quad is random.

2. If Alice halts before completing the previous stage, Bob outputs a random bit and halts. Otherwise,
Bob chooses one container from every quad and sends the chosen containers to Alice.

3. Alice verifies that all the containers Bob sent are still sealed (if not, or if Bob halts before sending all
the containers, she outputs ⊥ and halts). She then unlocks all the remaining containers, outputs the
xor of the bits in the containers she received from Bob and halts.

4. Bob opens all the containers in his possession. If any triplet of open containers is improper ((0, 0, 0)
or (1, 1, 1)), Bob outputs a random bit and halts. If Alice quits before unlocking the containers, Bob
outputs ⊥ and halts. Otherwise he outputs the xor of the bits in the containers that remain in his
possession and halts. In the DE model, Bob can open the containers without help from Alice, so he
never outputs ⊥.

The following theorem (whose proof appears in Section 2.6) states the security properties for the protocol:

Theorem 2.4. Protocol 2.1 securely realizes F (WCF) in the UC model.

2.3.2 Oblivious Transfer is Impossible

Any protocol in the DWL model is also a protocol in the DE model (see Section 2.4). We show in Section
2.4.1 that OT is impossible in the DE model, hence it must also be impossible in the DWL model.

20 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.3.3 Bit-Commitment is Impossible

To show bit-commitment is impossible in the DWL model, we define a small set of properties that every
bit-commitment protocol must satisfy in order to be considered “secure”. We then show that no protocol in
the DWL model can satisfy these properties simultaneously.

A bit-commitment protocol is a protocol between two players, a sender and a receiver. Formally, we can
describe the protocol using four PPTs, corresponding to the commitment stage and the opening stage for
each party.

PSCommit(b, 1
n) receives an input bit and plays the sender’s part in the commit stage of the protocol. The

PPT can communicate with PRCommit and with the F (DWL) functionality. It also has an output tape
whose contents are passed to PSOpen

PRCommit(1
n) plays the receiver’s part in the commit stage of the protocol. It can communicate with PSCommit

and with the F (DWL) functionality. It also has an output tape whose contents are passed to PROpen

PSOpen(1n) receives the output tape of PSCommit, and can communicate with PROpen and with the F (DWL)

functionality (note that F (DWL) retains its state between the commit and open stage).

PROpen(1n) receives the output tape of PRCommit, and can communicate with PROpen and with the F (DWL)

functionality. PROpen(1n) outputs either a bit b′ or ⊥.

A bit-commitment protocol is complete if it satisfies:

Definition 2.5 (Completeness). If b is the input to PSCommit, and both parties follow the protocol, the
probability that the output of PROpen(1n) is not b is a neglible function in n.

We say a bit-commitment protocol is secure if it satisfies the following two properties:

Definition 2.6 (Hiding). Let the sender’s input b be chosen uniformly at random. Then for any adversary
B substituted for PRCommit in the protocol, the probability that B can guess b is at most 1

2 + ε(n), where ε
is a negligible function.

Definition 2.7 (Binding). For any adversary A = (ACommit, AOpen(x)) substituted for PS in the protocol,
if x ∈ {0, 1} is chosen independently and uniformly at random after the end of the commit stage, the
probability (over A and PR’s random coins and over x) that PROpen outputs x is at most 1

2 + ε(n), where ε
is a negligible function.

Implementing bit-commitment that is secure against computationally unbounded players using only the
F (DWL) functionality is impossible. We show this is the case not only for universally composable bit-
commitment (which is a very strong notion of bit commitment), but even for a fairly weak version: there is
no bit commitment protocol that is both unconditionally hiding and unconditionally binding in the DWL
model.

Intuitively, the reason that bit-commitment is impossible is that in the DWL model the sender has access
to all the information the receiver has about the sender’s bit. This information cannot completely specify
the bit (since in that case the hiding requirement of the commitment protocol is not satisfied), hence there
must be valid decommitments for both 0 and 1 (that the receiver will accept). Since the sender knows what
information the receiver has, she can determine which decommitments will be accepted (contradicting the
binding requirement).

More formally, the proof proceeds in three stages. First, we show that we can assume w.l.o.g. that a BC
protocol in the DWL model ends the commit phase with all containers returned to their creators. Second,
we show that if the receiver is honest, the sender can compute everything the receiver knows about her bit
and her random string. We then combine these facts to show that either the receiver knows her bit (hence
the protocol is not hiding) or the sender can decommit to two different values (hence the protocol is not
binding).

Let P =
(
PSCommit, P

S
Open, P

R
Commit, P

R
Open

)
be a bit commitment protocol using calls to F (DWL), where

PS denotes the sender’s side of the protocol and PR the receiver’s side. Let Alice be the sender in the

2.3. CAPABILITIES OF THE DISTINGUISHABLE WEAK-LOCK MODEL 21

commitment protocol and Bob the receiver. Denote Alice’s input bit by b and her random string by rA.
Denote Bob’s random string rB and Bob’s view of the protocol at the end of the commit stage VBob (w.l.o.g,
this is assumed to be the output of PRCommit). We can assume w.l.o.g. that both parties know which is the
final message of the commit stage (since both parties must agree at some point that the commit stage is
over).

Let P ′ the protocol in which, at the end of the commit stage, Alice unlocks all the containers she created
and Bob opens all the containers in his possession, records their contents and returns them to Alice. Formally,
the protocol is defined as follows:

• P ′RCommit runs PRCommit using the same input and random coins, keeping track of the locations of all
containers created by the sender. When PRCommit terminates, P ′RCommit waits for all containers it holds
to be unlocked, then opens all of them, records their contents and returns them to P ′S .

• P ′SCommit runs PSCommit using the same input and random coins, keeping track of the locations of all
containers it creates. When PSCommit terminates, P ′SCommit unlocks all the containers created by PS and
still held by the receiver, then waits for the containers to be returned.

• P ′SOpen runs PSOpen, but when PSOpen sends an Unlock command to F (DWL) for a container that was
created by P ′SCommit, P

′S
Open instead sends a special “unlock” message to P ′ROpen.

• P ′ROpen runs PROpen, converting the special “unlock” messages sent by P ′SOpen to simulated Unlocked
messages from F (DWL). It also intercepts requests to open containers that were created by P ′SCommit

and simulates the responses using the recorded contents. It’s output is the output of PROpen.

Lemma 2.8. If P is both hiding and binding, so is P ′

Proof. P ′ is binding. If P ′ is not binding, it means there is some adversary A′ = (A′Commit, A
′
Open(x)) such

that when A′ is substituted for P ′S , P ′R will output x with probability at least 1
2 + poly(1

n).
We can construct an adversary A that will have the same probability of success when substituted for PS

in protocol P : ACommit runs A′Commit until PRCommit terminates, recording the contents and locations of any
containers A′ creates. It then continues to run A′Commit, discarding any Unlock commands A′ sends after
this point, and simulating the receipt of all containers created by A′ and still held by PR (if A′ asks to verify
a container, A simulates an ok response from F (DWL), and if it asks to open a container, A simulates the
correct Opened response using the recorded contents).

AOpen(x) runs A′Open(x). When A′Open(x) sends a special unlock message to PR, AOpen(x) sends the
corresponding real unlock command to F (DWL). Given the same input and random coins, the simulated
version of PROpen under P ′ has a view identical to the real PROpen under P , hence the output must be the
same. Therefore the probability that A is successful is identical to the probability that A′ is successful. This
contradicts the hypothesis that P is binding.

P ′ is hiding. If P ′ is not hiding, there is some adversary B′ = B′Commit that, substituted for P ′RCommit in
protocol P ′ can guess b with probability 1

2 +poly(1
n). We can construct an adversary B for the protocol P as

follows: B behaves identically to B′ until PSCommit terminates. It then breaks all the containers that remain
in its possession and continues running B′, simulating the Unlock messages from PS . Since the simulation
of B′ under B and the real B′ in protocol P ′ see an identical view (given the same random coins and input),
B and B′ will have the same output, guessing b successfully with non-negligible advantage. This contradicts
the hypothesis that P is hiding.

Denote P ′′ the protocol in which, at the end of PCommit, Alice returns all of Bob’s containers to him and
Bob uses them only in P ′′Open (or ignores them if they are never used).

Formally, P ′′SCommit runs PSCommit until it terminates, keeping track of the containers created by P ′′R. It
then returns all of those containers that it still holds to P ′′R. P ′′RCommit runs PRCommit until it terminates, and
records the ids of the containers received from P ′′SCommit.

P ′′SOpen runs PSOpen, replacing Send commands to F (DWL) for containers sent by P ′′S with special “send”
messages to P ′′R. When PSOpen attempts to open one of the containers sent by P ′′S , P ′′S sends a special
“return” message to P ′′R and waits for it to send that container.

22 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

P ′′ROpen runs PROpen, intercepting the special “send” and “return” messages from P ′′S . In response to a
“send” message it simulates a Receipt message from F (DWL), and in response to a “return” message it
gives the corresponding Send command to F (DWL).

Lemma 2.9. If P is both hiding and binding then so is P ′′

Proof. P ′′ is binding. Suppose P ′′ is not. Then there exists some adversary A′′ = (A′′Commit, A
′′
Open(x)) such

that when A′′ is substituted for P ′′S , P ′′R will output x with probability at least 1
2 + poly(1

n).
We can construct an adversary A that will have the same probability of success when substituted for

PS in protocol P : ACommit runs A′′Commit until PRCommit terminates. It then continues to run A′′Commit,
intercepting any Send commands A′′ sends after this point.

AOpen(x) runs A′′Open(x). When A′′Open(x) sends a special “send” message to P ′′R, AOpen(x) instead sends
the corresponding real container to PR. When A′′ sends a special “return” message to P ′′R, A simulates the
receipt of the container from P ′′R (this is possible because the container was never actually sent).

Given the same input and random coins, the simulated version of PROpen under P ′′ has a view identical to
the real PROpen under P , hence the output must be the same. Therefore the probability that A is successful
is identical to the probability that A′′ is successful. This contradicts the hypothesis that P is binding.

P ′′ is hiding. Suppose it is not, then there is some adversary B′′ = B′′Commit that, substituted for P ′RCommit

in protocol P ′′ can guess b with probability 1
2 + poly(1

n). We can construct an adversary B for the protocol
P as follows: B runs B′′ until PSCommit terminates, recording the contents and locations of containers it
creates. B then simulates the receipt of all containers it created that were still held by PS and continues
running B′′. If B′′ tests whether a container is sealed, B simulates an ok response for all containers (note
that since PS is an honest party, it cannot break any lock, so this response is always correct). If B′′ opens
a container, B simulates the proper response using the last recorded contents for that container (since only
the creator of the container can alter the contents, this response is always correct).

Given the same input and random coins, the views of B′′ when P ′′ is running and the simulated B′′

when P is running are identical, hence the output must be the same. Therefore B can also guess b with
probability 1

2 + poly(1
n), contradicting the hypothesis that P is hiding.

Lemma 2.10. If neither Alice (the sender) nor Bob (the receiver) break open containers (open a container
that is not unlocked), Alice can compute b, rA | VBob (the information Bob has about b and Alice’s random
string at the end of the commitment phase).

Proof. Bob’s view, VBob, is composed of some sequence of the following:

1. Seal messages for his own containers

2. Receipt messages for containers received from Alice.

3. Send messages for containers sent to Alice.

4. Open messages sent for containers he created and Alice holds (there’s no point in Bob opening a
container he created and also holds – he already knows what it contains)

5. Opened messages generated by Alice opening a container she created and he holds.

6. Verify messages he sent

7. Verified messages received as a response to his Verify messages.

8. Unlock messages he sent

9. Plaintext communication

Any information Bob has about b, rA must derive from his view of the protocol. Any messages sent by Bob
do not add information about b or rA: the contents of the message are determined solely by rB , which is
independent of b and rA, and by the prefix of the protocol. Therefore, the Seal, Send, Open, Verify and
Unlock messages do not contribute information about b or rA.

2.4. CAPABILITIES OF THE DISTINGUISHABLE ENVELOPE MODEL 23

The response to a Verify message will always be ok, since Alice never breaks open a container. Therefore
Verified messages do not contain any information about b or rA.

It follows that all the information Bob has about b, rA must reside in the Receipt and Opened messages
and plaintext communication. However, this information is also available to Alice: Every Receipt message
is generated by a Send message from Alice (so she knows the contents of all Receipt messages received by
Bob). On the other hand, since Bob never breaks open a container, every Open message he sends must be
preceded by an Unlock message from Alice. Thus, Alice must know which containers he opened (and since
she created them, she knows their contents) And, of course, Alice also knows anything she sent in plaintext
to Bob.

Theorem 2.11. F (BC) cannot be securely realized against computationally unbounded adversaries using
F (DWL) as a primitive.

Proof. From Lemmas 2.8 and 2.9, we can assume w.l.o.g that at the end of the Commit phase, all of Alice’s
containers are held by Alice and all of Bob’s containers are held by Bob

From Lemma 2.10, Alice knows everything Bob knows about b and rA. Therefore she can compute all
the possible pairs b′, r′A which are consistent with Bob’s view of the protocol.

Assume, in contradiction, that with non-negligible probability (over b and both parties’ random coins),
in at least poly(1

n) of the pairs b′ = 0 and in at least poly(1
n) of the pairs b′ = 1. Consider the following

adversary A = (ACommit, AOpen): ACommit runs PSCommit with a random input b. AOpen(x) actions depend
on b:

Case 1: If b = x, it runs PSOpen.

Case 2: if b = 1−x, but in at least poly(1
n) of the pairs b′ = x, it chooses r′A randomly from this set of pairs and

simulates PSCommit(x), using r′A for the random coins, intercepting all commands to F (DWL) but Seal
commands and simulating the correct responses using the recorded view (note that the contents and
ids of Bob’s containers must be identical no matter which r′A is chosen, because Bob’s view is identical
for all these pairs). A can send Seal commands for the containers because it currently holds all the
containers it created. AOpen(x) then runs PSOpen using the output from the simulation of PSCommit(x).

Case 3: If b = 1− x, but only a negligible fraction of the pairs b′ = x, it fails.

By the completeness property, the probability that PROpen outputs something other than x must be negligible
in cases 1 and 2. Case 1 occurs with probability 1

2 and, by our hypothesis, case 2 occurs with non-negligible
probability. This contradicts the binding property of the protocol.

Assume that the probability that both b′ = 0 and b′ = 1 in a non-negligible fraction of the pairs is
negligible. Consider the following adversary B: BCommit runs PRCommit. It then outputs the majority value of
b′ on all the pairs b′, rA consistent with it’s view. By our hypothesis, with overwhelming probability b′ = b,
contradicting the hiding property of the protocol. Thus, the protocol is either not binding or not hiding.

2.4 Capabilities of the Distinguishable Envelope Model

This model is clearly at least as strong as the Distinguishable Weak Lock model (defined in Section 2.2.2),
since we only added capabilities to the honest players, while the adversary remains the same. In fact, we
show that it is strictly stronger, by giving a protocol for bit-commitment in this model (in Section 2.3.3 we
prove that bit-commitment is impossible in the DWL model). We also give a protocol for 1

r -Strong Coin
Flipping in this model and show that Oblivious transfer is impossible.

2.4.1 Oblivious Transfer is Impossible

Let Alice be the sender and Bob the receiver. Consider Alice’s bits a0 and a1, as well as Bob’s input c, to
be random variables taken from some arbitrary distribution. Alice’s view of a protocol execution can also
be considered a random variable VA = (a0, a1, rA, N1, . . . , Nn), consisting of Alice’s bits, random coins (rA)
and the sequence of messages that comprise the transcript as seen by Alice. In the same way we denote

24 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Bob’s view with VB = (c, rB ,M1, . . . ,Mn), consisting of Bob’s input and random coins and the sequence of
messages seen by Bob.

The essence of oblivious transfer (whether universally composable or not) is that Bob gains information
about one of Alice’s bits, but Alice does not know which one. We can describe the information Bob has
about Alice’s bits using Shannon entropy, a basic tool of information theory. The Shannon entropy of a
random variable X, denoted H(X) is a measure of the “uncertainty” that resides in X. When X has finite
support: H(X) = −

∑
x Pr[X = x] log Pr[X = x].

Suppose Bob’s view of a specific protocol transcript is vB . What Bob learns about ai (i ∈ {0, 1}) can be
described by the conditional entropy of ai given Bob’s view of the protocol. We write this H(ai | VB = vB).
If Bob knows ai at the end of the protocol then H(ai | VB = vB) = 0 since there is no uncertainty left about
the value of ai given Bob’s view. If Bob has no information at all about ai then H(ai | VB = vB) = 1, since
there are two equally likely values of ai given Bob’s view.

We show that in any protocol in the DE Model, Alice can calculate the amount of information Bob has
about each of her bits:

Theorem 2.12. For any protocol transcript where VA = vA and VB = vB, both H(a0 | VB = vB) and
H(a1 | VB = vB) are completely determined by vA

Proof. We will show how to compute H(a0 | VB = vB) using the value of VA. Computing H(a1 | VB = vB)
works in the same way, replacing a0 with a1.

For any injection f and any random variable, the event Y = y is identical to the event f(Y) = f(y).
Therefore, for any two random variables X and Y , it holds that H(X | Y = y) = H(X | f(Y) = f(y)). We
will describe an injection from VB to a variable that Alice can (almost) compute:

1. Denote by C the set of all pairs (id, valueid) that appear in some Opened message from M1, . . . ,Mn

and such that id is one of Alice’s envelopes.

2. Denote by O the multiset of all pairs (id, state) that appear in some Verified message from M1, . . . ,Mn

This is a multiset because the same envelope may be verified multiple times. We only count the first
Verified message after a Receipt message for the same envelope, however (i.e. if Bob verified the
same envelope more than once without sending it to Alice between verifications, we ignore all but the
first).

3. Denote M ′ the subsequence of the messages M1, . . . ,Mn consisting only of Receipt messages from
F (DE) and plaintext messages from Alice. We consider M ′ to contain the indices of the messages in
the original sequence.

Let f(VB) = (O,C, c, rB ,M ′). To show that f is one-to-one, we show that given (O,C, c, rB ,M ′) it is
possible to compute VB by simulating Bob. The simulation proceeds as follows:

1. Run Bob (using c for the input and rB for the random coins) until Bob either sends a message to
F (DE) or should receive a message from Alice (we an assume w.l.o.g. that Bob always knows when he
is supposed to receive a message). If Bob asks to send a message to Alice the simulation pretends to
have done so.

2. If Bob sends a message to F (DE), we simulate a response from F (DE):

(a) If Bob sends an Open message for one of Alice’s envelopes, we can look up the contents in C and
respond with a simulated Opened message

(b) If Bob sends an Verify message for one of his envelopes, we can look up the result in O and
respond with a simulated Verified message (if the envelope was verified multiple times, we return
the result corresponding to the current request from the multiset, or the previous returned result
if Bob did not send the envelope to Alice between verifications).

(c) If Bob sends an Seal message, we store the value (and do nothing, since no response is expected).

2.4. CAPABILITIES OF THE DISTINGUISHABLE ENVELOPE MODEL 25

(d) If Bob sends an Open message for one of his own envelopes, we respond with an Opened message
using the value stored earlier.

(e) The simulation also keeps track of the locations of simulated envelopes (so that it can respond
correctly if Bob tries an illegal operation, such as opening an envelope that is not in his possession).

3. If Bob should receive a message, we simulate either a plaintext message from Alice or a Receipt
message from F (DE) by looking it up in M ′.

Given rB , Bob is deterministic, so the simulation transcript must be identical to the original protocol view.
Finally note that the random variables a0 and (c, rB) must be independent (otherwise, even before

beginning the protocol, Bob has information about Alice’s input bits). Hence, for any random variable X:
H(a0 | X, c, rB) = H(a0 | X). In particular, H(a0 | O,C, c, rB ,M ′) = H(a0 | O,C,M ′).

However, Alice can compute O,C,M ′ from VA: Alice can compute M ′ since any Receipt messages
Bob received must have been a response to a Send message sent by Alice, and all messages sent by Alice
(including plaintext messages) can be computed from her view of the protocol.

We can assume w.l.o.g. that Bob opens all the envelopes that remain in his possession at the end of the
protocol (if the protocol is secure, the protocol in which Bob opens the envelopes at the end must be secure
as well, since a corrupt Bob can always do so without getting caught). Likewise, we can assume w.l.o.g. that
both players verify all of their envelopes as they are returned by the other player (again, this can be done
by a corrupt player without leaking any information to the other player, so the protocol that includes this
step cannot be less secure than the same protocol without it).

C consists of the contents of all of Alice’s envelopes that Bob opened. Obviously, Alice knows the contents
of all her envelopes (since she created them). To compute C, she only needs to know which of them were
opened by Bob. Each of her envelopes is either in her possession or in Bob’s possession at the end of the
protocol; Alice can tell which is the case by checking if the envelope was sent more times than it was received.
If it’s not in her possession, she can assume Bob opened it. If it is in her possession, she verified the seal on
the envelope every time it was received from Bob and the results of the verification are in her view of the
protocol. If Bob opened it, at least one of the verifications must have failed. Thus, Alice can compute C.
Similarly, her view tells her which of Bob’s envelopes she opened and how many times each envelope was
sent to Bob. Since she can assume Bob verified each envelope every time it was returned to him, she can
compute the results of the Verified messages Bob received (and so she can compute O).

Thus, Alice can compute H(a0 | O,C,M ′) = H(a0 | f(VB) = f(vB)) = H(a0 | VB = vB).

2.4.2 Bit Commitment

In this section we give a protocol for bit-commitment using distinguishable envelopes. The protocol realizes
a weak version of bit commitment (defined in Section 2.2.4). Theorem 2.1 implies that WBC is sufficient to
realize “standard” bit-commitment.

Protocol 2.2 (3
4 -WBC).

To implement Commit b:

1. The receiver prepares four sealed envelopes, two containing a 0 and two a 1 in random order. The
receiver sends the envelopes to the sender.

2. The sender opens three envelopes (chosen randomly) and verifies that they are not all the same. Let
r be the value in the remaining (sealed) envelope. The sender sends d = b⊕ r to the receiver.

To implement Open:

1. The sender sends b and the sealed envelope to the receiver.

2. The receiver verifies that the envelope is sealed, then opens it to extract r. He verifies that d = b⊕ r.

The proof for the security of this protocol, stated as the following theorem, appears in Section 2.9:

Theorem 2.13. Protocol 2.2 securely realizes F (3
4−WBC) in the UC model.

26 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.4.3 A Strongly-Fair Coin Flipping Protocol with Bias O(1
r
)

The construction uses remotely inspectable seals (defined in Section 2.2.4), which we then show how to im-
plement in the DE model. The idea is similar to the “standard” coin flipping protocol using bit-commitment:
Alice commits to a random bit a. Bob sends Alice a random bit b, after which Alice opens her commitment.
The result is a⊕ b.

The reason that this is not a strongly-fair CF protocol is that Alice learns the result of the toss before
Bob and can decide to quit before opening her commitment. Using RIS instead of BC solves this problem,
because Bob can open the commitment without Alice’s help.

Ideally, we would like to replace BC with RIS (and have Alice verify that Bob didn’t break the seal before
sending b). This almost works; If Bob quits before verification, or if the verification fails, Alice can use a
as her bit, because Bob had to have decided to quit before seeing a. If Bob quits after verification (and the
verification passed), Alice can use a⊕ b, since Bob sent b before learning a.

The reason this idea fails is that RIS allows Bob to see the committed bit during verification. If he
doesn’t like it, he can cause the verification to fail.

We can overcome the problem with probability 1− 1
r by doing the verification in r rounds. The trick is

that Alice secretly decides on a “threshold round”: after this round a failure in verification won’t matter.
Bob doesn’t know which is the threshold round (he can guess with probability at most 1/r). If Bob decides
to stop before the threshold round, either he did not attempt to illegally open a commitment (in which case
his decision to stop cannot depend on the result of the coin flip), or he illegally opened all the remaining
commitments (opening less than that gives no information about the result). In this case all subsequent
verifications will fail, so he may as well have simply stopped at this round (note that the decision to open is
made before knowing the result of the coin flip). Clearly, anything Bob does after the threshold round has
no effect on the result. Only if he chooses to illegally open commitments during the threshold round can this
have an effect on the outcome (since in this case, whether or not the verification fails determines whether
Alice outputs a or a⊕ b).

The full protocol follows:

Protocol 2.3 (1
r -SCF). The protocol uses r instances of F (RIS):

1. Alice chooses r random bits a1, . . . , ar and sends Commit ai to F (RIS)
i (this is done in parallel).

Denote a = a1 ⊕ · · · ⊕ ar.

2. Bob chooses a random bit b. If Alice halts before finishing the commit stage, Bob outputs b. Otherwise,
he sends b to Alice.

3. If Bob halts before sending b, Alice outputs a. Otherwise, Alice chooses a secret index j ∈ {1, . . . , r}.

4. The protocol now proceeds in r rounds. Round i has the following form:

(a) Alice verifies that Bob did not open the commitment for ai.

(b) Bob opens the commitment for ai (this actually occurs during the RIS verification step).

5. If the verification for round j and all preceeding rounds was successful, Alice outputs a⊕ b. Otherwise,
Alice outputs a.

6. Bob always outputs a ⊕ b (If Alice halts before completing the verification rounds, Bob opens the
commitments himself (instead of waiting for verification).

The proof of the following theorem appears in Section 2.7:

Theorem 2.14. Protocol 2.3 securely realizes F (1
r−SCF) in the UC model.

2.4. CAPABILITIES OF THE DISTINGUISHABLE ENVELOPE MODEL 27

Implementation of Remotely Inspectable Seals

We give protocol that realizes 1
2 -RIS. We can then apply Theorem 2.2 to amplify it to ε-RIS for some

negligible ε. In addition to the F (DE) functionality, the protocol utilises a weak coin flip functionality with
one-sided error (only Bob can cheat). This can be implemented using distinguishable envelopes. The WCF
protocol in the DWL model, described in Section 2.3.1, has one-sided error in the DE model (although
we don’t give a formal proof in this paper). Alternatively, Blum’s protocol for coin flipping also has this
property, and can be implemented using bit-commitment.

Protocol 2.4 (1
2 -RIS).

To implement Commit b:

1. Alice sends two envelopes, denoted e0 and e1 to Bob, both containing the bit b.

To implement Verify:

1. Alice initiates a weakly-fair coin flip with Bob (the coin flip has one-sided error, so that Alice is unable
to cheat).

2. Denote the result of the coin flip r. Bob opens envelope e1−r and outputs (Verifying, b) (where b is
the contents of the envelope. Bob returns envelope er to Alice.

3. Alice waits for the result of the coin flip and the envelope from Bob. If the result of the coin flip is ⊥,
or if Bob does not return an envelope, Alice outputs ⊥. Otherwise, Alice verifies that Bob returned
the correct envelope and that it is still sealed. If either of these conditions is not satisfied, she outputs
⊥, otherwise she outputs Sealed.

To implement Open:

1. Bob randomly chooses one of the envelopes in his possession. He opens the envelope and outputs
(Opened, b) (where b is the contents of the envelope). Bob opens the other envelope as well.

The proof of the following theorem appears in Section 2.8.1:

Theorem 2.15. Protocol 2.4 securely realizes F (1
2−RIS) in the UC model.

2.4.4 Lower Bound for Strongly-Fair Coin Flipping

In [24], Cleve proves that for any coin flipping protocol in the standard model, one of the parties can bias
the result by Ω(1/r) where r is the number of rounds. This is true even if all we allow the adversary to do
is to stop early. An inspection of his proof shows that this is also true in the DE model:

Theorem 2.16. Any r-round strongly-fair coin flipping protocol in the DE model can be biased by Ω(1
r)

The main idea in Cleve’s proof is to construct a number of adversaries for each round of the protocol.
He then proves that the average bias for all the adversaries is at least Ω(1

r), so there must be an adversary
that can bias the result by that amount. Each adversary runs the protocol correctly until it reaches “its”
round. It then computes what an honest player would output had the other party stopped immediately after
that round. Depending on the result, it either stops in that round or continues for one more round and then
stops.

The only difficulty in implementing such an adversary in the DE model is that to compute its result it
might need to open envelopes, in which case it may not be able to continue to the next round. The solution
is to notice that it can safely open any envelopes that would not be sent to the other party at the end of the
round (since it will stop in the next round in any case). Also, it must be able to compute the result without
the envelopes it’s about to send (since if the other party stopped after the round ends he would no longer
have access to the envelopes). Therefore Cleve’s proof is valid in the DE model as well.

28 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.5 Capabilities of the Indistinguishable Weak-Lock Model

The addition of indistinguishability makes the tamper-evident seal model startlingly strong. Even in the
Weak Lock variant, unconditionally secure oblivious transfer is possible (and therefore so are bit-commitment
and coin flipping). In this section we construct a 1-2 OT protocol using the F (IWL) functionality. We show
a
(

1
2 ,

1
3

)
-PCWOT protocol (for a definition of the functionality, see 2.2.4). We can then use Theorem 2.3 to

construct a full 1-2 OT protocol.

2.5.1 A (1
2
, 1

3
)-Possibly Cheating Weak Oblivious Transfer Protocol

The basic idea for the protocol is that the sender can encode information in the order of containers, not just
in their contents. When the containers are indistinguishable, the sender can shuffle containers (thus changing
the information encoded in their order) without knowing the identities of the containers themselves; this
gives us the obliviousness.

In order to get a more intuitive understanding of the protocol it is useful to first consider a protocol that
works only against an “honest but curious” adversary:

1. the sender prepares two containers containing the bits (0, 1), and sends them to the receiver.

2. the receiver prepares two containers of his own, also containing (0, 1). If his bit is 0, he returns both
pairs to the sender with his pair first. If his bit is 1, he returns both pairs to the sender with his pair
second.

3. At this point, the sender no longer knows which of the pairs is which (as long as she doesn’t open any
containers). However, she knows that both pairs contain (0, 1). She now encodes her bits, one on each
pair (by leaving the pair alone for a 0 bit or exchanging the containers within the pair for a 1 bit). She
returns both pairs to the receiver.

4. the receiver verifies that both his containers are still sealed and then opens them. The bit he learns
from the sender can be deduced from the order of the containers in the pair. He randomly shuffles the
sender’s pair and returns it to the sender.

5. the sender verifies that the containers in the remaining pair are still sealed. Since the receiver shuffled
the containers within the pair, the original encoded bit is lost, so the contents of the containers give
her no information about the receiver’s bit.

Unfortunately, this simple protocol fails when the adversary is not limited to be passive. For example,
an active adversary that corrupts the receiver can replace the sender’s pair of the containers with his own
at stage (2). In stage (3) the sender encodes both her bits on the receiver’s containers, while he still has the
sender’s pair to return at stage (4).

To prevent this attack, we can let the sender start with additional container pairs (say, three). Then, in
stage (3), the sender can randomly choose two of her pairs and have the receiver tell her which ones they
are. She can then verify that the pairs are sealed and that they are the correct ones. Now she’s left with
two pairs (one hers and one the receiver’s), but the order may not be what the receiver wanted. So in the
modified protocol, before the sender encodes her bits, the receiver tells her whether or not to switch the
pairs.

If the receiver tampered with any of her pairs (or replaced them), with probability 2
3 the sender will catch

him (since he can’t know in advance which pairs the sender will choose to open). However, this modification
gives the sender a new way to cheat: She can secretly open one of the pairs at random (before choosing
which or her pairs to verify). There are four pairs, and only one is the receiver’s, so with probability 3

4 she
chooses one of her pairs. She can then ask the receiver to give her the locations of the other two pairs. Once
she knows the location of the receiver’s pair, she knows which bit he wants to learn.

To counter this attack, we let the receiver add two additional pairs as well (so that he returns six pairs
at stage (2)). After the sender chooses which of her pairs to verify, the receiver randomly chooses two of his
pairs to verify. He gives the sender the locations and she returns the pairs to him. Since there are now six

2.6. PROOF OF SECURITY FOR WEAKLY-FAIR COIN FLIPPING PROTOCOL 29

containers, three of which are the receiver’s, if the sender decides to open a container she will open one of
the receiver’s with probability 1

2 (which is allowed in a
(

1
2 ,

1
3

)
-PCWOT protocol).

However, although the receiver will eventually learn that the sender cheated, if he didn’t catch her here
(he doesn’t with probability 1

3), the sender will learn his bit before he can abort the protocol. We prevent
this by having the sender choose a random value r, and encoding a0 ⊕ r and a1 ⊕ r instead a0 and a1. At
the end of the protocol the receiver asks the sender to send him either r or a0 ⊕ a1 ⊕ r, depending on the
value of his bit. Learning only one of the values encoded by the sender gives the receiver no information
about the sender’s bits. Given the additional information from the sender, it allows him to learn the bit he
requires, but gain no information about the other bit. As long as the sender doesn’t know which of the two
encoded values the receiver learns, his request at the end of the protocol doesn’t give her any information
about his bit.

Similarly, the receiver can gain information about both of the sender’s bits by opening her containers as
well as his after she encodes them. This can be prevented by having the sender use the same value for both
of her containers (i.e., put 1 in both containers). Since the receiver should never open the sender’s pair if
he follows the protocol, this shouldn’t matter. If he hasn’t opened the pair previously, however, he now has
no information about the bit encoded in the pair (since he doesn’t know which container was originally the
first in the pair).

There remains a final problem with the protocol: the receiver can cheat by lying to the sender about the
locations of his pairs when he asks her to return them, and instead asking for the sender’s remaining pair
(along with one of his). In this case the sender remains with two of the receiver’s pairs, giving the receiver
both of her bits. We solve this by having the sender randomly shuffle the pairs she returns to the receiver.
If the pairs are indeed the receiver’s, he can tell how she shuffled them. For the sender’s pair, however, he
has to guess (since he doesn’t know their original order. This is almost enough, except that the receiver can
still cheat successfully with probability 1

2 by simply guessing the correct answer. To decrease the probability
of successfully cheating to 1

3 , we use triplets instead of pairs, and require the receiver to guess the location
of the second container in the triplet under the sender’s permutation.

The resulting protocol is what we require. As the protocol is fairly complex, we specify separately the
sender’s side (Protocol 2.5a) and the receiver’s side (Protocol 2.5b).

We prove the following theorem in Section 2.10:

Theorem 2.17. Protocol 2.5 securely realizes F (1
2 ,

1
3−PCWOT) in the UC model.

2.6 Proof of Security for Weakly-Fair Coin Flipping Protocol (Pro-
tocol 2.1)

In this section we prove Theorem 2.4. The proof follows the standard scheme for proofs in the UC model
(elaborated in Section 2.2.5). We deal separately with the case where A corrupts Alice and where A corrupts
Bob.

2.6.1 A Corrupts Bob

We first describe the ideal simulator, then prove that the environment’s view in the ideal and real worlds is
identically distributed. The ideal simulator, I, proceeds as follows:

1. I waits until ideal Alice sends a Value message to F (WCF) and it receives the (Approve, d) message
from F (WCF). I now continues running the protocol with A, simulating F (DWL). I sends 4n Receipt
messages to A.

2. I chooses n random quads exactly as Alice would following the protocol. Consider a quad “committed”
when the contents of all unopened containers in the quad are identical (i.e., if three containers have
already been opened or if two containers have been opened and contained the same value).

3. As long as there is at least one uncommitted quad, I responds to Open messages from A by returning
the values chosen in stage (2).

30 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Protocol 2.5a 1
2 ,

1
3 -PCWOT (Sender)

Input: bits a0, a1.
1: Prepare three triplets of containers. All the containers contain the value 1.
2: Send all nine containers to the receiver.
3: Wait to receive 18 containers (six triplets) from the receiver.
4: Select a random index i ∈R {1, 2, 3} and send i to the receiver.
5: Wait to receive indices (j1, j2) and (k1, k2) from the receiver {these should be the locations of the sender’s

triplets (except for triplet i) and the locations of two of the receiver’s triplets}.
6: Opens all the containers in triplets j1 and j2 and verify that they are the correct containers.
7: Choose two random permutations π1, π2 ∈R S3.
8: Shuffle the triplets k1 and k2 using π1 and π2, respectively.
9: Send the shuffled triplets k1 and k2 to the receiver. {the remaining unopened triplets should be the

original triplet i and one of the receiver’s triplets}
10: Wait to receive indices `1, `2 from the receiver.
11: Verify that `1 = π1(2) and `2 = π2(2). If not, abort.
12: Choose a random bit r ∈R {0, 1}.
13: if a0 ⊕ r = 1 then {Encode a0 ⊕ r on first remaining triplet}
14: Exchange first two containers in the first triplet. {encode a one}
15: else
16: Do nothing. {encode a zero}
17: end if
18: if a1 ⊕ r = 1 then {Encode a1 ⊕ r on second remaining triplet}
19: Exchange first two containers in the second triplet. {encode a one}
20: else
21: Do nothing. {encode a zero}
22: end if
23: Returns all six remaining containers to the receiver.
24: Wait to receive a bit b′ from the receiver.
25: if b′ = 0 then
26: Set x′ ← r.
27: else
28: Set x′ ← a0 ⊕ a1 ⊕ r.
29: end if
30: Send x′ to the receiver

2.6. PROOF OF SECURITY FOR WEAKLY-FAIR COIN FLIPPING PROTOCOL 31

Protocol 2.5b 1
2 ,

1
3 -PCWOT (Receiver)

Input: Choice bit b.
1: Wait to receive nine containers from the sender.
2: Prepare three triplets of containers (we’ll call them triplets 4,5 and 6). Each triplet contains the values

(0, 1, 0) in that order.
3: Choose a random permutation σ ∈ S6.
4: Shuffle all six triplets using σ. {the three containers in each triplet are not shuffled}
5: Send all 18 containers to the sender.
6: Wait to receive an index i from the sender.
7: Send the indices σ({1, 2, 3}\{i}) and σ({5, 6})to the sender. {the locations of the sender’s triplets except

for triplet i and the locations of the last two triplets created by the receiver}.
8: Wait to receive two triplets from the sender.
9: Verifies that all the containers in the received triplets were unopened and that they are from the original

triplets 5 and 6.
10: Open the containers. Let `1, `2 be the index of the container containing 1 in each triplet. Send `1, `2 to

the sender. {e.g., `1 should be π1(2)}
11: Wait to receive six containers (two triplets) from the sender.
12: if σ(i) > σ(4) then
13: Verify that all the containers in the first triplet are sealed and were originaly from triplet 4. If not,

abort.
14: Let x = 1 iff the first container in the first triplet contains 1. {x = a0 ⊕ r = 1}
15: Set c← 0
16: else
17: Verify that all the containers in the second triplet are sealed and were originaly from triplet 4. If not,

abort.
18: Let x = 1 iff the first container in the second triplet contains 1. {x = a1 ⊕ r = 1}
19: Set c← 1
20: end if
21: Send b⊕ c to the sender.
22: Wait to receive response x′ from the sender.
23: Output x⊕ x′. {x⊕ x′ = ab}

32 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

4. When only a single uncommitted quad remains, denote by x the xor of the values for the committed
quads. I will force the last unopened container in the quad to have the value x ⊕ d, by choosing the
responses from the distribution of permutations conditioned on the last container having the forced
value.

5. I waits for A to return one container from each quad.

6. If A halts before returning n containers, or if any of the n containers was opened, I sends a Halt
command to F (WCF). Otherwise it sends a Continue command.

7. I simulates the Unlocked messages for all the containers still held by A. It continues the simulation
until A halts.

Lemma 2.18. For any Z and A, when A corrupts Bob, Z’s view of the simulated protocol in the ideal world
and Z’s view in the real world are identically distributed.

Proof. Z’s view of the protocol in both worlds is identical, except for the contents of the containers sent by
Alice. An inspection of the simulation shows that the distribution of the contents is also identical: in both
the real and ideal worlds, the contents of each quad are uniformly random permutations of (0, 0, 1, 1). Also
in both cases, the xor of the committed value of all the quads is a uniformly random bit b. If A does not
open more than three containers in any quad, and returns containers according to the protocol, this is the
bit output by Alice in both the real and ideal worlds. If A opens all four containers, or does not return them
according to the protocol, Alice will output ⊥ in both the real and ideal worlds.

2.6.2 A Corrupts Alice

As in the previous case, we first describe the ideal simulator, then prove that the environment’s view in the
ideal and real worlds is identically distributed. The ideal simulator, I, proceeds as follows:

1. I sends a Value message to F (WCF) and waits to receive the (Approve, d) message from F (WCF).

2. I waits for A to send the 4n Seal and Send messages to F (WCF).

Case 2.1: If at least one of the quads is proper (i.e., contains two 0s and two 1s), I chooses which containers
to send in the other quads randomly, and then chooses a container to send in the proper quad so
that the xor of all the sent containers is d.

Case 2.2: If all the quads are improper, I chooses the containers to send from the uniform distribution
conditioned on the event that at least one quad has three remaining containers that contain
identical bits.

3. I sends the chosen containers to A, and waits for A to unlock the remaining containers.

4. If A does not unlock all the containers, or if one of the remaining quads is improper, I sends a Halt
command to F (WCF). Otherwise I sends a Continue command to F (WCF).

Lemma 2.19. For any ε > 0 there exists n = O(log 1
ε), such that for any Z and A, when A corrupts Alice

the statistical distance between Z’s view of the simulated protocol in the ideal world and Z’s view in the real
world is less than ε.

Proof. Z’s view of the protocol in both worlds is identical, except for the choice of containers sent by Bob.
In the real world, Bob’s choices are always uniformly random. If not all quads are improper, the distribution
of Bob’s choices in the ideal world is also uniformly random (since d is uniformly random, and the only
choice made by I that is not completely random is to condition on the xor of the quad values being d).
If all the quads are improper, the statistical difference between the uniform distribution and I’s choices is
exponentially small in n, since each quad has three remaining identical containers with probability at least
3
4 , and the events for each quad are independent (thus the probability that none of the quads was bad is at
most (3

4)n).

2.7. PROOF OF SECURITY FOR STRONGLY-FAIR COIN FLIP PROTOCOL 33

2.7 Proof of Security for Strongly-Fair Coin Flip Protocol (Pro-
tocol 2.3)

In this section we prove Theorem 2.14. The proof follows the standard scheme for proofs in the UC model
(elaborated in Section 2.2.5). We deal separately with the case where A corrupts the sender and where A
corrupts the receiver.

2.7.1 A Corrupts Alice

1. I sends a Value command to F (1
r−SCF). If it receives a ChooseValue message from F (1

r−SCF) it
randomly chooses a bit d and sends a Bias d command. Denote by d the result of the coin flip.

2. I waits for A to commit to the bits a1, . . . , ar. If A stops before committing to r bits, I halts as well.

3. Otherwise, I simulates Bob sending b = d⊕ a1 ⊕ · · · ⊕ ar to Alice. I then continues the protocol with
the simulated Bob behaving honestly.

Lemma 2.20. For any environment machine Z, and any real adversary A that corrupts only Alice, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. The proof is by inspection. First, note that the output of the ideal Bob always matches the output
of the simulated Bob (by the choice of b). Since I simulates Bob following the protocol precisely, the only
difference Z could notice is the distribution of b. However, this is uniform in both the real and ideal worlds,
since in the ideal world d (the result of F (1

r−SCF)’s coin flip) is uniformly distributed, and in the real world
Bob chooses b uniformly. Thus, Z’s view is identically distributed in both worlds.

2.7.2 A Corrupts Bob

1. I sends a Value command to F (1
r−SCF). We’ll say that I “has control” if it received a ChooseValue

message, and that I “doesn’t have control” if it received a ‘(Coin, d) message from F (1
r−SCF).

2. If I has control, it chooses a random bit d itself.

3. I simulates Bob receiving commit messages from F (RIS)
1 , . . . ,F (RIS)

r .

4. I waits for Bob (controlled by A) to send b to Alice.

Case 1: If A halts before sending b, I sends a Bias d command to F (1
r−SCF) and also halts.

Case 2: If A attempts to open the commitments before sending b, or if b = 0, I sends a Bias d command
to F (1

r−SCF) (this is ignored if I does not have control). I then randomly chooses a2, . . . , ar, sets
a1 ← d

⊕
i>1 ai and continues the protocol, proceeding as if Alice sent Commit ai to F (RIS)

i . In
this case no matter what Bob does, in the real-world protocol Alice must eventually output d.

Case 3: If A sends b = 1 before opening any commitments:

i. I begins simulating the protocol rounds, randomly choosing a value for each ai when A
opens (or simulated Alice verifies) F (RIS)

i . The simulation continues in this manner until the
contents of all but one of the commitments have been revealed (either because A prematurely
opened the commitments, or during the verification phase).

ii. Call a round j “good” if the verification stage of round j succeeded and all previous rounds
were good. Denote the current round by i, the index of the highest good round so far by j (by
definition j < i), and by k the smallest index such that the committed bit in instance F (RIS)

k

is not yet known to A (note that k ≥ i, since all instances up to i must have been revealed
during verification). The actions of I now depend on i, j, k and whether I has control:

34 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Case 3.1: If i < k, or if F (RIS)
k is being opened (rather than verified): (this is equivalent to the case

where even in the real world A couldn’t bias the result)
• I sends a Bias d command to F (1

r−SCF).
• I chooses a random index i∗ ∈ {1, . . . , r}.
• If i∗ > j, I sets ak ← d

⊕
6̀=k a`, otherwise ak ← b⊕ d

⊕
` 6=k a`.

• I continues the simulation as if Alice had actually chosen the bits a1, . . . , ar to commit
and the secret threshold round i∗. Note that if Alice had actually followed the protocol,
the choice of ak ensures that she always outputs d. This is because round i will certainly
fail verification (since F (RIS)

i has already been opened), so round j will remain the last
round which passed verification.

Case 3.2: If i = k, F (RIS)
k is being verified and I does not have control: (this is equivalent to the

case where A did not correctly guess the secret threshold round, but could have cheated
successfully if he had)
• I chooses a random index i∗ ∈ {1, . . . , r} \ {i}.
• If i∗ > j, I sets ak ← d

⊕
6̀=k a`, otherwise ak = b⊕ d

⊕
` 6=k a`.

• I continues the simulation as if Alice had actually chosen the bits a1, . . . , ar to commit
and the secret threshold round i∗. Note that if Alice had actually followed the protocol,
the choice of ak ensures that she always outputs d. This is because, by the choice of
i∗, it doesn’t matter whether or not round i fails verification (either i∗ > j, in which
case also i∗ > i, or i∗ ≤ j < i).

Case 3.3: If i = k, F (RIS)
k is being verified and I has control: (this is equivalent to the case where

A correctly guessed the secret threshold i, and can cheat successfully)
• I chooses a random bit for ak and continues the simulation.
• If A chooses to fail the verification, I sets d∗ ← d

⊕
` a`, otherwise (the verification

succeeds) I sets d∗ ← b⊕ d
⊕

` a`.

• I sends a Bias d∗ command to F (1
r−SCF).

• I continues the simulation until A halts.

Lemma 2.21. For any environment machine Z, and any real adversary A that corrupts only Bob, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. Z’s view can consist of a1, . . . , ar (the results of opening the commitments) and of the ideal Alice’s
output d.

In both the real and ideal worlds, in all cases the first r − 1 commitments opened by A are independent
and uniformly random (this can be easily seen by inspecting the simulator).

For any adversary that reaches Case 1 or Case 2 in the real world, the final commitment is always the
xor of b (the bit sent by A), the first r−1 commitments and the output of the real Alice (since the threshold
round does not affect the result in this case). This is also the situation in the ideal world.

For an adversary that reaches Case 3.1, the final commitment is the xor of the first r − 1 commitments
and the output of the real Alice with probability r−j

r (this is the probability that the secret threshold round
was after the last good round), and the complement of that with probability j

r (the probability that the
threshold round is in the first j rounds). By the choice of i∗, the distribution of the last commitment in the
ideal model is identical in this case.

Finally, consider the adversary that reaches Case 3.2 or Case 3.3. This adversary is honest until round i,
then opens all commitments except F (RIS)

i , whose contents are revealed during verification.

1. In the real world, with probability 1
r round i is the threshold round, in which case the final commitment

is the xor of the first r − 1 commitments and d if A fails the verification and the complement of that
if A does not fail. With the same probability, I is in control, and therefore executes Case 3.3 (which
calculates the final commitment in the same way).

2.8. PROOF OF SECURITY FOR REMOTELY INSPECTABLE SEALS 35

2. With probability 1− 1
r , round i is not the threshold round. In this case, the final commitment is the

xor of the first r − 1 commitments and d with probability r−i
r−1 (the threshold round is after i), and

the complement of that with probability i−1
r−1 (the threshold round is before i). In the same way, with

probability 1 − 1
r , I is not in control, and executes Case 3.2. The choice of i∗ ensures the correct

distribution of the final commitment.

Since any adversary must reach one of the cases above, we have shown that for all adversaries Z’s view
of the protocol is identical in the real and ideal worlds.

Together, Lemma 2.20 and Lemma 2.21 imply Theorem 2.14.

2.8 Proof of Security for Remotely Inspectable Seals

Below we prove Theorem 2.15 (in Section 2.8.1) and Thereom 2.2 (in Section 2.8.2).

2.8.1 Proof of Security for 1
2
-RIS Protocol (Protocol 2.4)

The proof of Theorem 2.15 follows the standard scheme for proofs in the UC model (elaborated in Section
2.2.5). We deal separately with the case where A corrupts the sender and where A corrupts the receiver.

A corrupts Alice (the sender)

To simulate the Commit command, I waits until A sends two envelopes to Bob. Denote the envelopes e0

and e1.

Case 1: If A does not send the envelopes, I sends the Halt command to F (1
2−RIS) (causing ideal Bob to output

⊥) and halts.

Case 2: If both envelopes contained the same bit b, I sends a Commit b message to F (1
2−RIS).

Case 3: If the envelopes contained two different bits, I randomly selects a bit b and sends Commit b to
F (1

2−RIS).

To simulate the Verify command:

1. I waits for A to initiate a coin flip.

2. If both envelopes sent by A contained the same bit, I chooses a random bit r, otherwise it sets r to
the index of the envelope containing b.

3. I sends r as the result of the coin flip to A.

4. I simulates sending envelope er to A.

5. I sends the Verify command to F (1
2−RIS) and waits for the functionality’s response.

Case 1: If the response is ⊥, verifying envelope er will return a broken message.
Case 2: If the response was Sealed, verifying envelope er will return a sealed message.

6. I continues the simulation until A halts.

Note that the Open command need not be simulated in this case — in both the ideal and the real worlds
this does not involve the sender at all.

Lemma 2.22. For any environment machine Z, and any real adversary A that corrupts only Alice, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

36 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

Proof. The proof is by case analysis. First, consider the view during the commit stage. Any adversary must
fall in one of the three cases. In Case 1, in both the real and ideal worlds Z’s view consists of Bob outputting
⊥ and Alice halting. In Case 2 and Case 3, Z’s view looks the same from A’s point of view, and in both
worlds Bob will output Committed.

If Z tells Bob to open the commitment before the verify stage, The output will be identical in the real
and ideal worlds (it will be (Opened, b), where b is a uniformly random bit if A commited two different
bits).

During the verification stage, r is always a random uniform bit. There are only two cases to consider:
either Z told Bob to open the commitment earlier, or it did not. If it did, F (1

2−RIS) will return a failed
verification, and A will also see a failed verification (exactly as would be the case in the real world). If it
did not, A will see a successful verification in both the real and ideal worlds.

Thus, in all cases Z’s view is identically distributed in both worlds.

A corrupts Bob (the receiver)

The simulation is in two phases. In the initial phase (corresponding to the Commit and Open commands):

1. I waits until it receives Committed from F (1
2−RIS). It then simulates A receiving two envelopes, e0

and e1.

2. If A requests to open any of the envelopes, I sends an Open command to F (1
2−RIS) and waits to

receive the (Opened, b) response. It then continues the simulation as if both envelopes had contained
b.

The second phase begins when I receives a (Verifying, x) message from F (1
2−RIS) (signifying that ideal

Alice sent a Verify command). I initiates the verification phase with A.

1. I chooses r in the following way: If, in the verification message, x 6=⊥ (that is, I has a choice about
whether the verification will fail), it chooses r randomly from the set of unopened envelopes (if both
were opened, it chooses randomly between them). If, in the verification message, x =⊥ (that is, the
verification will definitely fail), I chooses r randomly from the set of opened envelopes (note that at
least one envelope must be open for this to occur, because otherwise I would not have sent an Open
command to F (1

2−RIS) and would thus always have a choice).

2. I continues the simulation following the protocol exactly, letting the contents of the envelopes both
be b (where b ← x if x 6=⊥, otherwise it is the response to the Open command sent in the previous
phase.

3. The simulation continues until A returns an envelope. If that envelope was opened, or its index does
not match r, I fails the verification by sending a Halt command to F (1

2−RIS). If the envelope was
not opened and its index does match r, I sends the ok command to F (1

2−RIS) (note that if I had no
choice, the index r always matches an envelope that was already opened).

Lemma 2.23. For any environment machine Z, and any real adversary A that corrupts only Bob, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. Since I simulates Alice exactly, except for the contents of the envelopes and the result of the coin
flip and her response to verification, these are the only things that can differ in Z’s view between the real
and ideal worlds.

Simple inspection of the protocol shows that ideal Alice’s output and the contents of the envelopes are
always consistent with A’s view. It remains to show that the distribution of r is identical in the real and
ideal worlds. The only case in the ideal world in which r is not chosen uniformly at random by I is when
exactly one of the envelopes was opened. However, this means I must have sent an Open command to
F (1

2−RIS), and therefore with probability 1
2 the verification will fail. Thus, r is still distributed uniformly in

this case.

Together, Lemma 2.23 and Lemma 2.22 prove Theorem 2.15.

2.9. PROOF OF SECURITY FOR BIT-COMMITMENT PROTOCOL 37

2.8.2 Amplification for Remotely Inspectable Seals

The following protocol constructs an pk-RIS using k instances of F (p−RIS):

Commit b Alice chooses k random values r1, . . . , rk such that r1 ⊕ · · · ⊕ rk = b. She commits to the values
in parallel using F (p−RIS)

1 , . . . ,F (p−RIS)
k .

Verify Alice sends Verify commands in parallel to all k instances of F (p−RIS). The verification passes only
if all k verifications return Sealed.

Open Bob opens all k commitments. The result is the xor of the values returned.

The ideal adversary in this case is fairly simple. The case where the sender is corrupt is trivial, and we
omit it (since the sender can’t cheat in the basic F (p−RIS) instance). When A corrupts the receiver, the
simulation works in two phases: In the initial phase (corresponding to Commit and Open):

1. I waits to receive the Committed command from F (pk−RIS).

2. Whenever A asks to open a commitment for F (p−RIS)
i :

Case 2.1: If at least one additional commitment is still unopened, I chooses a random bit ri and returns
this as the committed value.

Case 2.2: If F (p−RIS)
i is the last unopened F (p−RIS) instance, I sends an Open command to F (pk−RIS)

and sets the value of the last commitment to be the xor of all the other commitments and the
response, b.

The second phase begins when I receives a (Verifying, x) message from F (pk−RIS) (signifying that ideal
Alice sent a Verify command). I initiates the verification phase with A. Denote the number commitments
opened by A by j.

Case 1: If j = k, I has sent an Open command previously to F (pk−RIS).

Case 1.1: If it has a choice about verification (occurs with probability pk), I sends a (Verifying, ri) message
to A for all instances of F (p−RIS). If A decides to fail verification in any of the instances, I sends
a Halt command to F (pk−RIS). Otherwise I sends an ok response to F (pk−RIS).

Case 1.2: Otherwise, I chooses k bits q1, . . . , qk by sampling from the binomial distribution B(k, p), condi-
tioned on at least one bit being 1 (i.e., equivalent to letting qi = 1 independently with probability
p, repeating until not all bits are 0). For each bit where qi = 0 it sends (Verifying, ri), and for
the other bits it sends (Verifying,⊥). I sends a Halt command to F (pk−RIS).

Case 2: If j < k, no Open command was sent, so I will always have a choice whether to fail verification. I
sends a (Verifying, xi) message to A for each instance of F (p−RIS). For instances which were not
opened, xi = ri. For instances that were opened, I chooses with probability p to send xi = ri and
with probability 1 − p to send xi =⊥. It then waits for A to respond. If in any of the instances it
chose xi =⊥, or if A decides to fail verification in any of the instances, it sends a Halt command to
F (pk−RIS). Otherwise I sends an ok response to F (pk−RIS).

It is easy to see by inspection that the adversary’s view is identical in the real and ideal worlds. Setting
k = O(log 1

ε), the amplification protocol gives us the proof for Theorem 2.2.

2.9 Proof of Security for Bit-Commitment Protocol

In this section we prove Protocol 2.2 realizes the WBC functionality (proving Theorem 2.13) and show how
to amplify WBC to get full bit-commitment (proving Theorem 2.1). We begin with the proof of security
for Protocol 2.2. The proof follows the standard scheme for proofs in the UC model (elaborated in Section
2.2.5). We deal separately with the case where A corrupts the sender and where A corrupts the receiver.

38 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.9.1 A corrupts Alice (the sender)

We divide the simulation, like the protocol, into two phases.

Simulation of the Commit Phase

I starts the simulated commit protocol with A (I simulates the honest receiver, Bob, in this protocol). I
sends four (simulated) envelopes to A. I chooses a random permutation σ ∈ S4. If A opens any of the
envelopes, I gives results that are consistent with Bob following the protocol (i.e., the envelopes’ contents
are determined by σ(0, 0, 1, 1)). I continues the simulation until Alice (controlled by A) sends a bit, d, to
Bob (as required by the protocol). The succeeding actions depend on how many envelopes A opened:

Case 1: A did not open any envelopes or opened two envelopes containing different bits. In this case I chooses
a random bit b and sends a Commit b command to F (3

4−WBC) .

Case 2: A opened a single envelope containing x. In this case I chooses a random bit b to be d ⊕ x with
probability 1

3 and d⊕ (1− x) with probability 2
3 . I sends a Commit b command to F (3

4−WBC) .

Case 3: Alice opened two envelopes containing identical bits x. Letting b = d⊕ (1− x), I sends a Commit b
command to F (3

4−WBC) .

Case 4: Alice opened three envelopes whose xor is x. Letting b = d⊕ (1− x), I sends a Commit b command
to F (3

4−WBC) .

Case 5: Alice opened four envelopes. Letting b = 0, I sends a Commit b command to F (3
4−WBC) .

Simulation of the Open Phase

I begins simulating the Open phase of the protocol with A, and waits for A to send an envelope and a bit
b′. If A asks to open an envelope i before this occurs, I proceeds in the following way:

Let Pconsistent be the set of permutations of (0, 0, 1, 1) that are consistent with A’s view so far (i.e.,
the permutations that map the correct contents to the envelopes A has already opened), and Pvalid the set
of permutations in which at least one of the envelopes that will remain unopened after opening i contains
b ⊕ d (where b is the bit to which I committed in the Commit phase). I randomly chooses a permutation
from Pconsistent ∩ Pvalid and responds to the request to open i as if Bob had chosen this permutation in the
Commit phase.

Note that I’s choice of d and b ensures that at the end of the Commit phase Pconsistent ∩ Pvalid is not
empty. As long as i is not the last unopened envelope, Pconsistent ∩ Pvalid will remain non-empty. If i is the
last unopened envelope, I responds with the value consistent with the other opened envelopes.

Once A sends the bit b′ and an envelope, I proceeds as follows: If the envelope is unopened, and b′ = b, I
sends the Open command to F (3

4−WBC) . Otherwise, I aborts the protocol by sending the Halt command
to F (3

4−WBC) (and simulating Bob aborting the protocol to A).

Lemma 2.24. For any environment machine Z and any real adversary A that corrupts only the sender, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. I simulates Bob (the receiver) exactly following the protocol (apart from the envelope contents), and
the simulation ensures that the ideal Bob’s output is consistent with A’s view of the protocol. The only
possible differences between Z’s view in the real and ideal worlds are the contents of the envelopes sent by
Bob. Inspection of the protocol and simulation shows that in both the real and ideal worlds A always sees
a random permutation of (0, 0, 1, 1).

2.9.2 A corrupts Bob (the receiver)

As before, the simulation is divided into two phases.

2.9. PROOF OF SECURITY FOR BIT-COMMITMENT PROTOCOL 39

Simulation of the Commit Phase

I waits until A sends four envelopes and until the Committed message is received from F (3
4−WBC) . I’s

actions depend on the contents of the envelopes sent by A:

Case 1: If the envelopes sent by A are a valid quad (two zeroes and two ones), I sends a random bit d to A.

Case 2: If the envelopes are all identical (all zeroes or all ones), I aborts the protocol by sending the Halt
command to F (3

4−WBC) (and simulating Alice aborting the protocol to A)

Case 3: If the envelopes contain three ones and a zero, or three zeroes and a one, denote x the singleton bit. I
sends a Break message to F (3

4−WBC) . If the response is ⊥, I simulates Alice aborting the protocol
to A and halts. If the response is (Broken, b), I sends b⊕ (1− x) to A.

Simulation of the Open Phase

I waits to receive the (Opened, b) message from F (3
4−WBC) . It then proceeds depending on A’s actions in

the Commit phase:

Case 1: If A sent a valid quad, I randomly picks one of the two envelopes that contain d⊕ b and returns it to
A.

Case 2: If the envelopes sent by A were not a valid quad, they must be three ones and a zero or three zeroes
and a one (otherwise I would have aborted in the Commit phase). In this case I randomly chooses
one of the three identical envelopes and simulates returning it to A.

I sends the bit b to A as well. If A checks whether the envelope returned by Alice is sealed, I simulates an
affirmative reply from F (DE).

Lemma 2.25. For any environment machine Z and any real adversary A that corrupts only the receiver,
the output of Z when communicating with A in the real world is identically distributed to the output of Z
when communicating with I in the ideal world.

Proof. I’s simulation of Alice (the sender) is always consistent with a real Alice that follows the protocol
(from A’s point of view), and it ensures that the ideal Alice’s output is also consistent with A’s view. A’s
view consists of d, the bit sent by Alice in the commit phase (or Alice halting in the commit phase), and the
choice of envelope returned in the open phase. In both the real and ideal worlds, when A sends a proper quad
d is uniformly random When A sends a quad whose bits are all identical, in both worlds Alice will abort.
When A sends a quad containg three bits with value 1− x and one bit with value x, in the real world Alice
would abort with probability 1

4 (if x is the unopened envelope), and send d = b⊕ (1−x) with probability 3
4 .

In the ideal world, d is distributed identically, since F (3
4−WBC) allows cheating with probability 3

4 .
In the real world, if A sent a proper quad in the commit phase, the envelope returned in the open phase

is a random envelope and its value, r, satisfies r = d ⊕ b. Inspection of the simulation shows that the
same holds in the ideal world. if A sent an improper quad in the commit phase (conditioned on Alice not
aborting), the envelope is randomly selected from one of the three containing the same bit, and its value
satisfies (1− r) = d⊕ b. Again, this holds in the ideal world.

Thus, Z’s views are identically distributed in both worlds,

Together, Lemmas 2.24 and 2.25 imply Theorem 2.13.

2.9.3 Amplification for Weak Bit Commitment

The following protocol constructs an pk-WBC using k instances of F (p−WBC):

Commit b Alice chooses k random values r1, . . . , rk such that r1 ⊕ · · · ⊕ rk = b. She commits to the values
in parallel using F (p−WBC)

1 , . . . ,F (k−WBC)
1 .

Open Alice opens all k commitments. The result is the xor of the values returned.

40 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

The proof that this procotol securely realizes F (pk−WBC) is extremely similar to the proof of the RIS
amplification protocol (in Section 2.8.2), and we omit it here. Letting k = O(log 1

ε), the amplification
protocol gives us the proof for Theorem 2.1.

2.10 Proof of Security for Oblivious Transfer Protocol

This section contains the proof of Theorem 2.17. The proof follows the standard scheme for proofs in the
UC model (elaborated in Section 2.2.5). We deal separately with the case where A corrupts the sender and
where A corrupts the receiver. Note that when A corrupts the sender, I simulates an honest receiver and
references to steps in the protocol refer to Protocol 2.5b, while when A corrupts the receiver, I is simulating
an honest sender and the steps refer to Protocol 2.5a.

2.10.1 A corrupts the receiver

Assume A begins by corrupting the receiver. I also corrupts the receiver and sends a CanCheat command
to F (1

2 ,
1
3−PCWOT). I waits for the sender to send a Send command, then begins simulating the real-world

protocol by sending nine Receipt messages to A (acting for the receiver). Call a triplet of containers in
which all containers are sealed and all belonged to the original triplet good. We now describe a decision tree
for I. The edges in the tree correspond either to choices made by A (these are marked by †), or to responses
from F (1

2 ,
1
3−PCWOT).

Case 1†: All the triplets created by the sender are returned by A at step (3) and all are good. In this case,
I randomly chooses i as specified in the protocol and continues the simulation until step (5). The
protocol continues depending on A’s actions:

Case 1.1†: A sent incorrect locations for the sender’s triplets σ({j1, j2}) 6= {1, 2, 3} \ {i}. In this case the
real sender would have aborted, so I aborts.

Case 1.2†: A sent correct locations for the triplets {1, 2, 3} \ {i}, but one of the triplets he wants the sender
to return (k1 or k2) is actually triplet i. I chooses π1 randomly as required by the protocol
(note: below, we always refer to the permutation used shuffle the receiver’s triplet as π1 and the
permutation used to shuffle the sender’s triplet as π2). The simulation continues depending on
whether I cheated successfully:

Case 1.2.1: I cheated successfully and received b0 and b1 (this occurs with probability 1
3). In this case

I continues the simulation until step (10), where A sends `2, its guess for π2(2), to the
sender. At this point I always accepts (equivalently, it selects π2 at random from the set of
permutations for which π2(2) = `2). I can now continue simulating a real sender, following
the protocol exactly.

Case 1.2.2: I failed to cheat and did not receive b0, b1. I continues the simulation until the end of step
(10), where A sends `2, its guess for π2(2). at this point I always aborts (equivalently, it
selects π2 at random from the set of permutations for which π2(2) 6= `2, and continues the
simulation for the sender, who will then abort).

Case 1.3†: A sent correct locations for the triplets {1, 2, 3} \ {i} and both the triplets he asks the sender
to return are the receiver’s. In this case simulates the sender returning thw two triplets two the
receiver. I chooses a random bit a′. If the receiver asks to open his triplet, I returns answers
consistent with the sender encoding a′ on the receiver’s triplet. I continues the simulation until
step (24), when the receiver sends the bit b′. Since I knows σ, given b′ I can compute the unique
value, b, that is consistent with the input of an honest receiver using the same permutation σ and
the same public messages. I sends a Choice b command to F (1

2 ,
1
3−PCWOT) and receives ab. I

then simulates the sender responding with ab ⊕ a′ to the receiver in stage (30). The simulation
then continues until it A halts.

2.10. PROOF OF SECURITY FOR OBLIVIOUS TRANSFER PROTOCOL 41

Case 2†: Of the triplets created by the sender, at most two are good and returned by A at step (3). Let j be
the index of a bad (or missing) triplet (if there is more than one I chooses randomly between them).
The simulation continues depending on whether I can cheat successfully:

Case 2.1: I received both b0 and b1 (this occurs with probability 1
3). In this case I chooses i = j. I then

continues the protocol simulating an honest sender and letting the ideal receiver output whatever
the A commands it to output.

Case 2.2: I cannot cheat successfully. In this case I chooses i randomly from {1, 2, 3} \ {j}. This forces A
to send the simulated sender the location of triplet j at step (5). No matter what he sends the
real sender running the protocol in the “real-world” scenario would abort. Hence I always aborts
at step (6).

Lemma 2.26. For any environment machine Z, and any real adversary A that corrupts only the receiver,
the output of Z when communicating with A in the real world is identically distributed to the output of Z
when communicating with I in the ideal world.

Proof. The proof is by case analysis. I’s decision tree implicitly groups all possible adversaries by their
actions at critical points in the protocol. To show that Z’s view of the protocol is identically distributed
in the real and ideal worlds, it is enough to show that the distribution of the view is identical given any
specific choice by Z and A. Since I’s actions are identical for all adversaries in the same group, it is enough
to consider the groups implied by I’s decision tree.

Case 1.1 This is the case where A returned triplets that were all good, but sent incorrect locations for the
sender’s triplets. Z’s view in this case consists only of Receipt messages, the index i that is chosen
at random both in the real world and in the ideal world, and the ⊥ message sent by the sender.

Case 1.2 This is the case where A returned triplets that were all good, but asked for triplet i instead of his
own triplets. Z’s view up to step (10) consists of the Receipt messages, the index i, the permutation
π1. All these are chosen identically in both the real and ideal worlds. In the real world, with probability
1
3 the sender would have chosen π2 that is inconsistent with A’s guess `2, in which case the protocol
would halt with the sender outputting ⊥. In the ideal world, I can cheat with probability 1

3 , so with
the same probability the protocol halts and the sender outputs ⊥. Conditioned on the protocol not
halting, the view in both cases is also identically distributed, because in the ideal world I cheated
successfully and can simulate the real sender exactly (since it now knows a0 and a1).

Case 1.3 This is the case where the adversary follows the protocol exactly (as far as messages sent to the
sender and the F (IWL) functionality). In this case, I also simulates an honest sender exactly until
step (13). In the real and ideal worlds, the bit encoded on Bob’s triplet (a′) is uniformly random. The
response sent in stage (30) is in both cases completely determined (in the same way) by a′, the input
bits a0, a1 and the receiver’s actions.

Case 2 This is the case where the adversary opened (or replaced) containers before returning them in stage
(3). The view up to this stage in both the real and ideal world consists of Receipt messages and the
ids of the opened containers (the contents are always 1 bits). In both the real world and ideal worlds,
the index i sent by the sender is uniformly distributed in {1, 2, 3} (in the ideal world this is because
the probability that I cheats successfully is 1

3 , so that with probability 1
3 , i is set to some fixed j, and

with probability 2
3 it is set to one of the other values). Also, in both worlds, the probability that the

sender picked an index which was opened (replaced) by A is determined by the number of containers
that were opened (and is at least 1

3). In either case, I can exactly simulate the sender, since if cheating
was unsuccessful the protocol will necessarily halt before I needs to use the sender’s inputs. Thus, in
both cases the protocol will be identically distributed.

42 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.10.2 A corrupts the sender

Assume A begins by corrupting the sender. I corrupts the real sender and sends a CanCheat command to
F (1

2 ,
1
3−PCWOT). I then runs the simulation until the simulated sender sends nine containers. I simulates

the receiver returning the containers to the sender (note that the steps in the protocol now refer to Protocol
2.5b). The simulation now depends on A’s actions:

Case 1†: A asks to open one of the containers before sending i to the receiver in step (6). Denote the index
of the container A opens by j. I continues the simulation based on the response to the CanCheat
command:

Case 1.1: I can cheat. In this case I pretends A opened one of the sender’s containers (chosen randomly);
I selects a random permutation σ ∈ S6 from the set of permutations that map one of the sender’s
containers to index j. I then continues the simulation to the end, as if the receiver was honest and
had shuffled the containers using σ. If the simulation reaches stage (12) without anyone aborting,
I sends a Send 0, 0 command to F (1

2 ,
1
3−PCWOT) and waits for the real (ideal dummy) receiver

to send the Choice command. I then continues the simulation using the the real receiver’s bit.
After the sender sends the bit in step (22), I calculates the simulated receiver’s output and sends
a Resend command to F (1

2 ,
1
3−PCWOT) using that bit.

Case 1.2: I can’t cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the receiver’s containers to index j. I then continues the simulation as if the
receiver had shuffled the containers using σ. No matter what A does, I will then abort at step
(9), (13) or (17), since that is what the real receiver would have done.

Case 2†: A does not open any container before sending i in stage (6). The simulation continues until stage (9)
or until A asks to open a container that shouldn’t be opened according to the protocol:

Case 2.1†: A does not open any container (except those called for by the protocol, which will always be A’s
own containers) until the beginning of stage (9). Note that in this case w.l.o.g., A can wait to
open containers until step (11). I continues the simulation, randomly choosing σ at stage (10).
The simulation can now take the following paths:

Case 2.1.1†: A does not open any container until step (12). By this stage the sender no longer holds
any containers, so A cannot open containers later either. I continues the simulation using 0
in place of the receiver’s choice bit. Since I knows what exchanges A made on each of the
triplets, at the end of the protocol it can recover both a0 and a1. It sends a Send a0, a1

command to F (1
2 ,

1
3−PCWOT).

Case 2.1.2†: A opens one of the containers before step (12).
Case 2.1.2.1: I can cheat. In this case I pretends the container A opens belongs to the sender’s triplet.

I sends a Send 0, 0 command to F (1
2 ,

1
3−PCWOT) and waits for the real receiver to send

the Choice command. I then continues the simulation using the real receiver’s bit. After
the corrupt sender sends the bit in stage (22), I calculates the simulated receiver’s output
and sends a Resend command to F (1

2 ,
1
3−PCWOT) using that bit.

Case 2.1.2.2: I can’t cheat. In this case I pretends the container A opens belongs to the receiver’s
triplet. Whatever A does, I will then abort in step (13) or (17).

Case 2.2†: A asks to open a container not called for by the protocol before stage (9). Denote the index of
this container by j. I’s actions depend on whether it can cheat:

Case 2.2.1: I can cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the sender’s containers to index j. I then continues the simulation to the
end as if the receiver was honest and had shuffled the containers using σ. If the simulation
reaches step (11) without anyone aborting, I sends a Send 0, 0 message to F (1

2 ,
1
3−PCWOT)

and waits for the real receiver to send a Choice message. I continues the simulation using
the real receiver’s bit. At the end of the simulation, I knows the simulated receiver’s output
and uses that in a Resend command to F (1

2 ,
1
3−PCWOT).

2.10. PROOF OF SECURITY FOR OBLIVIOUS TRANSFER PROTOCOL 43

Case 2.2.2: I can’t cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the receiver’s containers to index j. I then continues the simulation as if the
receiver had shuffled the containers using σ. If an opened container is sent to the receiver in
step (8), I will then abort at stage (9), since that is what the real receiver would have done.
If the opened container is not sent to the receiver at step (8), I will abort at step (13) or
(17).

Lemma 2.27. For any environment machine Z, and any real adversary A that corrupts only the sender,
the output of Z when communicating with A in the real world is identically distributed to the output of Z
when communicating with I in the ideal world.

Proof. The proof is by case analysis. I’s decision tree implicitly groups all possible adversaries by their
actions at critical points in the protocol. To show that Z’s view of the protocol is identically distributed
in the real and ideal worlds, it is enough to show that the distribution of the view is identical given any
specific choice by Z and A. Since I’s actions are identical for all adversaries in the same group, it is enough
to consider the groups implied by I’s decision tree.

Case 1 This is the case where A first deviates from the protocol by opening one of the containers before
sending i in step (6). In the real world, the receiver’s choice of σ is uniformly random. Thus, no matter
what container A chooses to open, it will be one of the receiver’s containers with probability 1

2 . In
the ideal world, I’s choice of σ is also random: with probability 1

2 , I can cheat, in which case σ is
chosen from the half of S6 permutations that map j to the sender’s containers. With probability 1

2 , I
cannot cheat, in which case σ is chosen from the half of S6 permutations that map j to the receiver’s
containers. The rest of the simulation in the ideal world is an exact simulation of the real receiver (in
the case that I cannot cheat, it will never need to use the sender’s input bits, since it will halt in step
(9), (13) or (17). Thus in both cases the protocol view is identically distributed.

Case 2.1.1 This is the case where A honestly follows the protocol (from the point of view of I). In this
case, up to stage (12), I simulates a real receiver exactly. The only difference between the simulation
and the real world is that I uses the choice bit 0 in the simulation rather than the receiver’s input
bit. However, the view of A is identical, since in both cases the bit requested by the receiver in stage
(12) is uniformly random (because σ is chosen at random, and A has no information about the order
of the final two triplets). The receiver’s output is identical in both worlds, because I can compute the
sender’s inputs from A’s actions.

Case 2.1.2 This is the case where A first deviates from the protocol by opening a container during step
(11). Up to the deviation from the protocol, I simulates the real receiver exactly, so the protocol view
up to that point is identical in both worlds. In both worlds A has no information about the order of
the two remaining triplets (this is determined by the choice of σ and i). In the real world, the container
A opens will be the receiver’s container with probability 1

2 . In the ideal world, this will also be the
case, since I can cheat with probability 1

2 . If I can cheat, the rest of the simulation exactly follows the
protocol (since I now knows the real receiver’s choice bit). If I cannot cheat, the choice of σ ensures
that the rest of the simulation still follows the protocol exactly, since the receiver will abort before it
needs to use its choice bit. Thus, in both worlds the protocol view is identically distributed.

Case 2.2 This is the case where A first deviates from the protocol by opening a container after sending i
in step (6) but before stage (9). As in Case 1 (and for the same reasons), σ is uniformly distributed
in both worlds. If I can cheat, the simulation follows the protocol exactly (I knows the real receiver’s
choice), so the view is identical. If I cannot cheat the choice of σ ensures that I will never have to use
the real receiver’s choice, so the view is again distributed identically to the real world.

Together, Lemma 2.26 and Lemma 2.27 prove Theorem 2.17.

44 CHAPTER 2. BASING CRYPTOGRAPHIC PROTOCOLS ON TAMPER-EVIDENT SEALS

2.11 Discussion and Open Problems

2.11.1 Zero Knowledge Without Bit Commitment

In the bare model, where bit-commitment is impossible, Zero knowledge proofs exist only for languages in
SZK — which is known to be closed under complement and is thus unlikely contain NP. An interesting
open question is whether the class of languages that have zero-knowledge proofs in the DWL model (where
bit-commitment is impossible; see Section 2.3.3) is strictly greater than SZK (assuming P 6= NP).

2.11.2 Actual Human Feasibility

The protocols we describe in this paper can be performed by unaided humans, however they require too many
containers to be practical for most uses. It would be useful to construct protocols that can be performed
with a smaller number of containers (while retaining security), and with a smaller number of rounds.

Another point worth mentioning is that the protocols we construct in the distinguishable models only
require one of the parties to seal and verify containers. Thus, the binding property is only used in one
direction, and the tamper-evidence and hiding properties in the other. This property is useful when we want
to implement the protocols in a setting where one of the parties may be powerful enough to open the seal
undetectably. This may occur, for instance, in the context of voting, where one of the parties could be “the
government” while the other is a private citizen.

In both the weakly and strongly-fair CF protocols, only the first round requires envelopes to be created,
and their contents do not depend on communication with the other party. This allows the protocols to
be implemented using scratch-off cards (which must be printed in advance). In particular, the weakly-fair
coin flipping protocol can be implemented with a scratch-off card using only a small number of areas to be
scratched.

In the case of bit-commitment, our protocol requires the powerful party to be the receiver. It would be
interesting to construct a BC protocol for which the powerful party is the sender (i.e., only the sender is
required to to seal and verify envelopes).

Chapter 3

Polling With Physical Envelopes: A
Rigorous Analysis of a
Human-Centric Protocol

3.1 Introduction

In the past few years, a lot of attention has been given to the design and analysis of electronic voting
schemes. Constructing a protocol that meets all (or even most) of the criteria expected from a voting
scheme is generally considered to be a tough problem. The complexity of current protocols (in terms of how
difficult it is to describe the protocol to a layperson) reflects this fact. A slightly easier problem, which has
not been investigated as extensively, is that of polling schemes.

Polling schemes are closely related to voting, but usually have slightly less exacting requirements. In a
polling scheme the purpose of the pollster is to get a good statistical profile of the responses, however some
degree of error is admissible. Unlike voting, absolute secrecy is generally not a requirement for polling, but
some degree of response privacy is often necessary to ensure respondents’ cooperation.

The issue of privacy arises because polls often contain questions whose answers may be incriminating or
stigmatizing (e.g., questions on immigration status, drug use, religion or political beliefs). Even if promised
that the results of the poll will be used anonymously, the accuracy of the poll is strongly linked to the trust
responders place in the pollster. A useful rule of thumb for polling sensitive questions is “better privacy
implies better data”: the more respondents trust that their responses cannot be used against them, the
likelier they are to answer truthfully. Using polling techniques that clearly give privacy guarantees can
significantly increase the accuracy of a poll.

A well-known method for use in these situations is the “randomized response technique” (RRT), in-
troduced by Warner in 1965 [75]. Roughly, Warner’s idea was to tell responders to lie with some fixed,
predetermined, probability (e.g., roll a die and lie whenever the die shows one or two). As the probability
of a truthful result is known exactly, statistical analysis of the results is still possible1, but an individual
answer is always plausibly deniable (the respondent can always claim the die came up one).

Unfortunately, in some cases this method causes its own problems. In pre-election polls, for example,
responders have a strong incentive to always tell the truth, ignoring the die (since the results of the polls
are believed to affect the outcome of the elections). In this case, the statistical analysis will give the
cheating responders more weight than the honest responders. Ambainis, Jakobsson and Lipmaa [3] proposed
the “Cryptographic Randomized Response Technique” to deal with this problem. Their paper contains a

1 For instance, suppose p > 1
2

is the probability of a truthful response, n is the total number of responses, x is the number of
responders who actually belong in the “yes” category and R is the random variable counting the number of “yes” responses. R is
the sum of n independent indicator random varables, so R is a good estimation for E(R) = px+(1−p)(n−x) = x(2p−1)+n(1−p).

Therefore, given R, we can accurately estimate the actual number of “yes” responders: x =
E(R)−n(1−p)

2p−1
.

45

46 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

number of different protocols that prevent malicious responders from biasing the results of the poll while
preserving the deniability of the randomized response protocol. Unlike Warner’s original RRT, however, the
CRRT protocols are too complex to be implemented in practice without the aid of computers. Since the
main problem with polling is the responders’ lack of trust in the pollsters, this limitation makes the protocols
of [3] unsuitable in most instances.

The problem of trust in complex protocols is not a new one, and actually exists on two levels. The first
is that the protocol itself may be hard to understand, and its security may not be evident to the layman
(even though it may be formally proved). The second is that the computers and operating system actually
implementing the protocol may not be trusted (even though the protocol itself is). This problem is more
acute than the first. Even for an expert, it is very difficult to verify that a computer implementation of a
complex protocol is correct.

Ideally, we would like to design protocols that are simple enough to grasp intuitively and can also be
implemented transparently (so that the user can follow the steps and verify that they are correct).

3.1.1 Our Results

In this paper we propose two very simple protocols for cryptographic randomized response polls, based
on tamper-evident seals (introduced in a previous paper by the authors [53]). A tamper-evident seal is a
cryptographic primitive that captures the properties of a sealed envelope: while the envelope is sealed, it is
impossible to tell what’s inside, but if the seal is broken the envelope cannot be resealed (so any tampering is
evident). In fact, our CRRT protocols are meant to be implemented using physical envelopes (or scratch-off
cards) rather than computers. Since the properties of physical envelopes are intuitively understood, even by
a layman, it is easy to verify that the implementation is correct.

The second important contribution of this paper, differentiating it from previous works concerning human-
implementable protocols, is that we give a formal definition and a rigorous proof of security for the protocols.
The security is unconditional: it relies only on the physical tamper-evidence properties of the envelopes, not
on any computational assumption. Furthermore, we show that the protocols are “universally composable”
(as defined by Canetti [16]). This is a very strong notion of security that implies, via Canetti’s Composition
Theorem, that the security guarantees hold even under general concurrent composition

Our protocols implement a relaxed version of CRRT (called weakly secure in [3]). We also give an
inefficient strong CRRT protocol (that requires a large number of rounds), and give impossibility results and
lower bounds for strong CRRT protocols with a certain range of parameters (based on Cleve’s lower bound
for coin flipping [24]). These suggest that constructing a strong CRRT protocol using scratch-off cards may
be difficult (or even impossible if we require a constant number of rounds).

3.1.2 Related Work

Randomized Response Technique. The randomized response technique for polling was first introduced in
1965 [75]. Since then many variations have been proposed (a survey can be found in [18]). Most of these are
attempts to improve or change the statistical properties of the poll results (e.g., decreasing the variance), or
changing the presentation of the protocol to emphasize the privacy guarantee (e.g., instead of lying, tell the
responders to answer a completely unrelated question). A fairly recent example is the “Three Card Method”
[36], developed for the United States Government Accountability Office (GAO) in order to estimate the size
of the illegal resident population. None of these methods address the case where the responders maliciously
attempt to bias the results.

To the best of our knowledge, the first polling protocol dealing explicitly with malicious bias was given by
Kikuchi, Akiyama, Nakamura and Gobioff. [49], who proposed to use the protocol for voting (the protocol
described is a randomized response technique, although the authors do not appear to have been aware of
the previous research on the subject). Their protocol is still subject to malicious bias using a “premature
halting” attack (this is equivalent to the attack on the RRT protocol in which the responder rolls a die but
refuses to answer if result of the die is not to his liking). A more comprehensive treatment, as well as a
formal definition of cryptographic randomized response, was given by Ambainis et al. [3]. In their paper,
Ambainis et al. also give a protocol for Strong CRRT, in which the premature halting attack is impossible.

3.1. INTRODUCTION 47

In both the papers [49, 3], the protocols are based on cryptographic assumptions and require computers to
implement.

Independently of this work, Stamm and Jakobsson show how to implement the protocol of [3] using
playing cards [72]. They consider this implementation only as a visualization tool. However, if we substitute
envelopes for playing cards (and add a verification step), this protocol gives a Responder-Immune protocol
(having some similarities to the one described in Section 3.3.2).

Deniable and Receipt-Free Protocols. The issues of deniability and coercion have been extensively studied
in the literature (some of the early papers in this area are [7, 69, 15, 17, 37]). There are a number of
different definitions of what it means for a protocol to be deniable. Common to all of them is that they
protect against an adversary that attacks actively only after the protocol execution: in particular, this allows
the parties to lie about their random coins. Receipt-Free protocols provide a stronger notion of security:
they guarantee that even if a party is actively colluding with the adversary, the adversary should have no
verifiable information about which input they used. Our notion of “plausible deniability” is weaker than
both “traditional” deniability and receipt-freeness, in that we allow the adversary to gain some information
about the input. However, as in receipt-freeness, we consider an adversary that is active before and during
the protocol, not just afterwards.

Secure Protocols Using “Real” Objects. The idea of using real objects to provide security predates cryptog-
raphy: people have been using seals, locks and envelopes for much of history. Traditionally, the objects were
constructed directly to solve a given problem (e.g., locks were created specifically to provide access control).
Using real objects to implement protocols for tasks that are not obviously related to their original purpose is
a newer notion. Fagin, Naor and Winkler [38] propose protocols for comparing secret information that use
various objects, from paper cups to the telephone system. In a more jocular tone, Naor, Naor and Reingold
[59] propose a protocol that provides a “zero knowledge proof of knowledge” of the correct answer to the
children’s puzzle “Where’s Waldo” using “low-tech devices” (e.g., a large newspaper and scissors). In all
these works the security assumptions and definitions are informal or unstated. Crépeau and Kilian [31] show
how to use a deck of cards to play “discreet” solitary games (these involve hiding information from yourself).
Their model is formally defined, however it is not malicious; the solitary player is assumed to be honest but
curious.

A related way of using real objects is as aids in performing a “standard” calculation. Examples in this
category include Schneier’s “Solitaire” cipher [70] (implemented using a pack of cards), and the “Visual
Cryptography” of Naor and Shamir [61] (which uses the human visual system to perform some basic oper-
ations on images). The principles of Visual Cryptography form the basis for some more complex protocols,
such as the “Visual Authentication” protocol of Naor and Pinkas [60], and Chaum’s human verifiable voting
system [21].

Tamper-Evident Seals. This work can be viewed as a continuation of a previous work by the authors on
tamper-evident seals [53]. In [53], we studied the possibility of implementing basic cryptographic primitives
using different variants of physical, tamper-evident seals. In the current work we focus on their use in realistic
cryptographic applications, rather than theoretical constructs (for instance, there is a very sharp limit on the
number of rounds and the number of envelopes that can be used in a protocol that we expect to be practical
for humans). We limit ourselves to the “distinguishable envelope” (DE) model, as this model has a number
of intuitive physical embodiments, while at the same time is powerful enough, in theory, to implement many
useful protocols2 (an informal description of this model is given in Section 3.2.3; for a formal definition see
[53]).

Overview of Paper. In Section 3.2, we give formal definitions of the functionalities we would like to realize
and the assumptions we make about the humans implementing the protocols. Section 3.3 gives an informal
description of the CRRT protocols. In Section 3.6, we show how to amplify a weak pollster-immune CRRT
protocol in order to construct a strong CRRT protocol, and give some impossibility results and lower bounds
for strong CRRT protocols. The formal protocol specifications and proofs of security for our pollster-immune
and responder-immune CRRT protocols appear in Sections 3.4 and 3.5, respectively. Finally, a discussion

2Although the “indistinguishable envelope model” (also defined in [53]) is stronger (e.g., oblivious transfer is possible in this
model), it seems to be very hard to devise a secure, physical realization of this functionality.

48 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

and some open problems appear in Section 3.7.

3.2 The Model

Ideal Functionalities. Many two-party functionalities are easy to implement using a trusted third party that
follows pre-agreed rules. In proving that a two-party protocol is secure, we often want to say that it behaves
“as if it were performed using the trusted third party”.

The “Universal Composability” framework, defined by Canetti [16], is a formalization of this idea. In the
UC model, the trusted third party is called the ideal functionality. If every attack against the protocol can
also be carried out against the ideal functionality, we say the protocol realizes the functionality. Canetti’s
Composition Theorem says that any protocol that is secure using the ideal functionality, will remain secure
if we replace calls to the ideal functionality with executions of the protocol.

Defining the security guarantees of our protocols as ideal functionalities has an additional advantage as
well: it is usually easier to understand what it means for a protocol to satisfy a definition in this form than
a definition given as a list of properties. Below, we describe the properties we wish to have in a CRRT
protocol, and give formal definitions in the form of ideal functionalities.

3.2.1 Cryptographic Randomized Response

A randomized response protocol involves two parties, a pollster and a responder. The responder has a secret
input bit b (this is the true response to the poll question). In the ideal case, the pollster learns a bit c,
which is equal to b with probability p (p is known to the pollster) and to 1− b with probability 1− p. Since
p is known to the pollster, the distribution of responders’ secret inputs can be easily estimated from the
distribution of the pollster’s outputs.

The essential property we require of a Randomized Response protocol is plausible deniability : A responder
should be able to claim that, with reasonable probability, the bit learned by the pollster is not the secret bit
b. This should be the case even if the pollster maliciously deviates from the protocol.

A Cryptographic Randomized Response protocol is a Randomized Response protocol that satisfies an
additional requirement, bounded bias: The probability that c = b must be at most p, even if the responder
maliciously deviates from the protocol. The bounded bias requirement ensures that malicious responders
cannot bias the results of the poll (other than by changing their own vote). Note that even in the ideal case,
a responder can always choose any bias p′ between p and 1− p, by randomly choosing whether to vote b or
1− b (with the appropriate probability).

Strong p-CRRT

In a strong CRRT protocol, both the deniability and bounded bias requirements are satisfied. Formally, this
functionality has a single command:

Vote x The issuer of this command is the responder. On receiving this command the functionality tosses
a weighted coin c, such that c = 0 with probability p. It then outputs x ⊕ c to the pollster and the
adversary.

Unfortunately, we do not know how to construct a practical strong CRRT protocol that can be imple-
mented by humans. In Section 3.6, we present evidence to suggest that finding such a protocol may be hard
(although we do show an impractical strong CRRT protocol, that requires a large number of rounds). The
protocols we propose satisfy relaxed conditions: The first protocol is immune to malicious pollsters (it is
equivalent to strong CRRT if the responder is honest), while the second is immune to malicious responders
(it is equivalent to strong CRRT if the pollster is honest).

Pollster-Immune p-CRRT (adapted from Weak CRRT in [3])

This is a weakened version of CRRT, where a malicious pollster cannot learn more than an honest pollster
about the responder’s secret bit. A malicious responder can bias the result by deviating from the protocol

3.2. THE MODEL 49

(halting early). A cheating responder will be caught with fixed probability, however, so the pollster can
accurately estimate the number of responders who are cheating (and thus bound the resulting bias). When
the pollster catches the responder cheating, it outputs � instead of its usual output. Formally, the ideal
functionality accepts the following commands:

Query The issuer of this command is the pollster, the other party is the responder. The functionality
ignores all commands until it receives this one. On receiving this command the functionality chooses
a uniformly random bit r (we’ll call this the provisional result bit) and a bit v, such that v = 1 with
probability 2p−1 (we’ll call v the responder control bit). If the responder is corrupted, the functionality
then sends both bits to the adversary.

Vote b On receiving this command from the responder, the functionality checks whether v = 1 (i.e., the
responder has control). If so, it outputs b to the pollster, otherwise it outputs r (the provisional result
chosen in response to the Query command) to the pollster.

Halt This command captures the responder’s ability to cheat. On receiving this command from a corrupt
responder, the functionality outputs � to the pollster and halts.

The functionality described above is slightly more complex (and a little weaker) than would appear to be
necessary, and this requires explanation. Ideally, the functionality should function as follows: the responder
casts her vote, and is notified of the actual bit the pollster would receive. The responder then has the option
to halt (and prevent the pollster from learning the bit). Our protocol gives the corrupt responder a little
more power: the responder first learns the control bit v (determining whether the responder has any control
over the bit sent to the pollster), and the provisional response bit r (which will be sent if the responder does
not have control). The responder can then plan her actions based on this information. This slightly weaker
functionality is the one that is actually realized by our protocol (for p = 3

4).

Responder-Immune p-CRRT

In this weakened version of CRRT, malicious responders cannot bias the results more than honest responders,
but a malicious pollster can learn the responder’s secret bit. In this case, however, the responder will discover
that the pollster is cheating. When the responder catches the pollster cheating, it outputs � to signify this.
The functionality accepts the following commands:

Vote b The issuer of this command is the responder. On receiving this command the functionality tosses a
weighted coin c, such that c = 0 with probability p. It then outputs b⊕ c to the pollster and adversary.

Reveal The command may only be sent by a corrupt pollster after the Vote command was issued by the
responder. On receiving this command, the functionality outputs b to the adversary and � to the
responder.

Test x : The command may only be sent by a corrupt pollster, after the Vote command was issued by the
responder. On receiving this command:

• if x = b, then with prob. 1
2 it outputs b to the adversary and � to the responder, and with prob.

1
2 it outputs ⊥ to the adversary (and nothing to the responder).

• if x = 1− b the functionality outputs ⊥ to the adversary (and nothing to the responder).

Ideally, we would like to realize responder-immune CRRT without the Test command. Our protocol realizes
this slightly weaker functionality (for p = 2

3). It may appear that a corrupt pollster can cheat without
being detected using the Test command. However, for any corrupt pollster strategy, if we condition on the
pollster’s cheating remaining undetected, the pollster gains no additional information about the responder’s
choice (since in that case the response to the Test command is always ⊥).

50 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

3.2.2 Modelling Humans

The protocols introduced in this paper are meant to be implemented by humans. To formally prove security
properties of the protocols, it is important to make explicit the abilities and limitations we expect from
humans.

Following Instructions. The most basic assumption we make about the parties participating in the pro-
tocol is that an honest party will be able to follow the instructions of the protocol correctly. While this
requirement is clearly reasonable for computers, it may not be so easy to achieve with humans. The ability
to follow instructions depends on the complexity of the protocol, as well as the protocol participants and
the environment in which the protocol is executed. Our protocols are secure and correct only assuming the
honest parties are actually following the protocol. Unfortunately, we do not know how to predict whether
this assumption actually holds for a specific protocol without “real” experimental data.

Random Choice. Our protocols require the honest parties to make random choices. Choosing a truly random
bit may be very difficult for a human (in fact, even physically tossing a coin has about 0.51 probability of
landing on the side it started on [35]). For the purposes of our analysis, we assume that whenever we require
a party to make a random choice it is uniformly random. In practice, a random choice may be implemented
using simple physical means (e.g., flipping a coin or rolling a die). In practice, the slight bias introduced by
physical coin flipping will not have a large effect on the correctness or privacy of our protocols. We note
that even if relatively “bad” randomness is used (e.g., just asking the parties to “choose randomly”), the
security of the protocol does not break down completely. For example, if a malicious pollster can make a
better guess as to the responder’s random choices, he will gain additional information about the responder’s
“real” answer — but as long as he can’t guess the random choices with certainty, the responder will still
have some measure of deniability.

Non-Requirements. Unlike many protocols involving humans, we do not assume any additional capabilities
beyond those described above. We don’t require parties to forget information they have learned, or to
perform actions obliviously (e.g., shuffle a deck without knowing what the permutation was). Of particular
note, we don’t require the parties to watch each other during the protocol: this means the protocols can be
conducted by physical mail.

3.2.3 Distinguishable Envelopes

Our CRRT protocols require a physicial assumption: tamper-evident envelopes or scratch-off cards. Formally,
we model these by an ideal functionality we call “Distinguishable Envelopes” (originally defined in [53]; for
completeness, we include the definition in Appendix 3.A). Loosely speaking, a distinguishable envelope is an
envelope in which a message can be sealed. Anyone can open the envelope (and read the message), but the
broken seal will be evident to anyone looking at the envelope.

3.2.4 Proofs in the UC Model

Below, we outline the requirements for proofs in the UC model (this description is taken from [53]; for an
in-depth explanation of the UC model, see [16]). Those who are familiar with the UC model may safely skip
this subsection.

Formally, the UC model defines two “worlds”, which should be indistinguishable to an outside observer
called the “environment machine” (denoted Z).

The “ideal world” contains two “dummy” parties, the “target” ideal functionality, Z and an “ideal
adversary”, I. The parties in this world are “dummy” parties because they pass any input they receive
directly to the target ideal functionality, and write anything received from the ideal functionality to their
local output. I can communicate with Z and the ideal functionality, and can corrupt one of the parties. I
sees the input and any communication sent to the corrupted party, and can control the output of that party.
The environment machine, Z, can set the inputs to the parties and read their local outputs, but cannot see
the communication with the ideal functionality.

3.3. AN INFORMAL PRESENTATION OF THE PROTOCOLS 51

The “real world” contains two “real” parties: Z and the “real adversary”, A. In addition it may contain
the “service” ideal functionalities (in our case the distinguishable envelope functionality). A can communicate
with Z and the “service” ideal functionalities, and can corrupt one of the parties. The uncorrupted parties
follow the protocol, while corrupted parties are completely controlled by A. As in the ideal world, Z can set
the inputs for the parties and see their outputs, but not internal communication (other than what is known
to the adversary).

The protocol securely realizes an ideal functionality in the UC model, if there exists I such that for any
Z and A, Z cannot distinguish between the ideal world and the real world. Our proofs of security follow the
general outline for a proof typical of the UC model: we describe the ideal adversary, I, that “lives” in the
ideal world. Internally, I simulates the execution of the “real” adversary, A. We can assume w.l.o.g. that
A is simply a proxy for Z, sending any commands received from the environment to the appropriate party
and relaying any communication from the parties back to the environment machine. I simulates the “real
world” for A, in such a way that Z cannot distinguish between the ideal world when it is talking to I and
the real world. In our case we will show that Z’s view of the execution is not only indistinguishable, but
actually identical in both cases.

All the ideal adversaries used in our proofs have, roughly, the same idea. They contain a “black-box”
simulation of the real adversary, intercepting its communication with the tamper-evident container function-
alities and replacing it with a simulated interaction with simulated tamper-evident containers. The main
problem in simulating a session that is indistinguishable from the real world is that the ideal adversary does
not have access to honest parties’ inputs, and so cannot just simulate the honest parties. Instead, the ideal
adversary makes use of the fact that in the ideal world the “tamper-evident seals” are simulated, giving it
two tools that are not available in the real world:

First, the ideal adversary does not need to commit in advance to the contents of containers (it can decide
what the contents are at the time they are opened), since, in the real world, the contents of a container don’t
affect the view until the moment it is opened.

Second, the ideal adversary knows exactly what the real adversary is doing with the simulated containers
at the time the real adversary performs the action, since any commands sent by the real adversary to the
simulated tamper-evident container functionality are actually received by the ideal adversary. This means
the ideal adversary knows when the real adversary is cheating. The target functionalities, when they allow
cheating, fail completely if successful cheating gives the corrupt party “illegal” information: in case cheating
is successful they give the adversary the entire input of the honest party. Thus, the strategy used by the
ideal adversary is to attempt to cheat (by sending a command to the target ideal functionality) when it
detects the real adversary cheating. If it succeeds, it can simulate the rest of the protocol identically to a
real honest party (since it now has all the information it needs). If it fails to cheat, the ideal adversary uses
its “inside” information to cause the real adversary to be “caught” in the simulation.

3.3 An Informal Presentation of the Protocols

It is tempting to try to base a CRRT protocol on oblivious transfer (OT), since if the responder does not
learn what the pollster’s result is, it may be hard to influence it (in fact, one of the protocols in [3] is based on
OT). However, OT is impossible in the DE model [53]. As we show in Section 3.6.1, this proof implies that
in any CRRT protocol using distinguishable envelopes, the responder must learn a lot about the pollster’s
result. In both our protocols, the responder gets complete information about the final result.

To make the presentation more concrete, suppose the poll question is “do you eat your veggies?”. Clearly,
no one would like to admit that they do not have a balanced diet. On the other hand, pressure groups such
as the “People for the Ethical Treatment of Salad” have a political interest in biasing the results of the poll,
making it a good candidate for CRRT.

3.3.1 Pollster-Immune CRRT

This protocol can be implemented with pre-printed scratch-off cards: The responder is given a scratch-off
card with four scratchable “bubbles”, arranged in two rows of two bubbles each. In each row, the word

52 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Figure 3.3.1: Sample execution of pollster-immune protocol

3.3. AN INFORMAL PRESENTATION OF THE PROTOCOLS 53

“Yes” is hidden under one bubble and the word “No” under the other (the responder doesn’t know which
is which). The responder scratches the bubbles in two stages: first, she scratches a single random bubble in
each row. Suppose the responder doesn’t eat her veggies. If one of the rows (or both) show the word “No”,
she “wins” (and the pollster will count the response as expressing dislike of vegetables). If both bubbles
show “Yes”, she “loses” (and the pollster will count the response as expressing a taste for salad).

In any case, before returning the card to the pollster, the responder performs the second scratching stage:
she “eliminates” the row that shows the unfavored answer by scratching the entire row (she picks one of the
rows at random if both rows show the same answer) Thus, as long as the responder follows the protocol, the
pollster receives a card that has one “eliminated” (entirely scratched) row and one row showing the result
he will count. An example of protocol execution appears in Figure 3.3.1.

Security Intuition. Note that exactly 3
4 of the time, the counted result will match the responder’s intended

result. Moreover, without invalidating the entire card, the responder cannot succeed with higher probability.
On the other hand, this provides the responder with plausible deniability: she can always claim both rows
were “bad”, and so the result didn’t reflect her wishes. Because the pollster doesn’t know which were the
two bubbles that were scratched first, he cannot refute this claim. An important point is that plausible
deniability is preserved even if the pollster attempts to cheat (this is what allows the responder to answer
the poll accurately even when the pollster isn’t trusted). Essentially, the only way the pollster can cheat
without being unavoidably caught is to put the same answer under both bubbles in one of the rows. To get
a feeling for why this doesn’t help, write out the distribution of responses in all four cases (cheating/honest,
Yes/No). It will be evident that the pollster does not get any additional information about the vote from
cheating in this way.

On the other hand, the responder learns the result before the pollster, and can decide to quit if it’s not
to her liking (without revealing the result to the pollster). Since the pollster does not know the responder’s
outcome, this has the effect of biasing the result of the poll. However, by counting the number of prematurely
halted protocol executions, the pollster can accurately estimate the number of cheating responders.

The formal protocol specification and proof appear in Section 3.4.

3.3.2 Responder-Immune CRRT

The responder takes three envelopes (e.g., labelled “1”, “2” and “3”), and places one card containing either
“Yes” or “No” in each of the envelopes. If she would like to answer “No”, she places a single “Yes” card in
a random envelope, and one “No” card in each of the two remaining envelopes. She then seals the envelopes
and gives them to the pollster (remembering which of the envelopes contained the “Yes” card).

The pollster chooses a random envelope and opens it, revealing the card to the responder. He then asks
the responder to tell him which of the two remaining envelopes contains a card with the opposite answer.
He opens that envelope as well. If the envelope does contain a card with the opposite answer, he records
the answer on the first card as the response to the poll, and returns the third (unopened) envelope to the
responder.

If both opened envelopes contain the same answer, it can only be because the responder cheated. In this
case, the pollster opens the third envelope as well. If the third envelope contains the opposite answer, the
pollster records the answer on the first card as the response to the poll. If, on the other hand, all three
envelopes contain the same answer, the pollster rolls a die: A result of 1 to 4 (probability 2

3) means he records
the answer that appears in the envelopes, and a result of 5 or 6 means she records the opposite answer. An
example of protocol execution (where both parties follow the protocol) appears in Figure 3.3.2.

Security Intuition. In this protocol, the responder gets her wish with probability at most 2
3 no matter what

she does. If she follows the protocol when putting the answers in the envelopes, the pollster will choose the
envelope containing the other answer with probability 1

3 . If she tries to cheat by putting the same answer
in all three envelopes, the pollster will roll a die and choose the opposite answer with probability 1

3 . The
pollster, on the other hand, can decide to open all three envelopes and thus discover the real answer favored
by the responder. If he does this, however, the responder will see that the seal on the returned envelope was
broken and know the pollster was cheating.

The pollster may also be able to cheat in an additional way: he can open two envelopes before telling the

54 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Figure 3.3.2: Sample execution of responder-immune protocol

3.4. A POLLSTER-IMMUNE 3
4 -CRRT PROTOCOL 55

responder which envelope he opened, and hope that the responder will not require him to return an envelope
that was already opened. This attack is what requires us to add the Test command to the functionality.

The formal protocol specification and proof appear in Section 3.5.

Implementation Notes. This protocol requires real envelopes (rather than scratch-off cards) to implement,
since the responder must choose what to place in the envelopes (and we cannot assume the responder can
create a scratch-off card). In general, tamper-evidence for envelopes may be hard to achieve (especially as
the envelopes will most likely be provided by the pollster). In this protocol, however, the pollster’s actions
can be performed in full view of the responder, so any opening of the envelopes will be immediately evident.
When this is the case, the responder can tell which envelope the pollster opened first, so the protocol actually
realizes the stronger version of the Responder-Immune CRRT functionality (without the Test command).

If the penalty for a pollster caught cheating is large enough, the privacy guaranteed by this protocol, may
be enough to convince responders to answer accurately in a real-world situation even with the weaker version
of the functionality. This is because any pollster cheating that can possibly reveal additional information
about the responder’s choice carries with it a corresponding risk of detection.

3.4 A Pollster-Immune 3
4-CRRT Protocol

3.4.1 Formal Specification

A formal specification is given as Protocol 3.1 (see Section 3.3.1 for an informal description). The specification
is in two parts: Protocol 3.1a describes the pollster’s side of the protocol, while Protocol 3.1b describe’s the
responder’s side. In the description of the protocol, we use the shorthand “generate an envelope” to mean
sending a corresponding Seal command to F (DE), and “send an envelope” to mean sending a corresponding
Send command to F (DE).

Protocol 3.1a Pollster-Immune 3
4 -CRRT (Pollster executing Query)

1: Choose two random bits p0, p1 ∈R {0, 1}.
2: Generate two pairs of sealed envelopes: (E0,0, E0,1) containing (p0, 1− p0), respectively, and (E1,0, E1,1)

containing (p1, 1− p1), respectively.
3: Send all four envelopes to responder.
4: Wait for responder to return four envelopes envelopes.
5: if 4 envelopes were returned and exactly 3 were opened then
6: if there exists i ∈ {0, 1} s.t. Ei,0 is still sealed then
7: Output 1− pi.
8: else {there exists i ∈ {0, 1} s.t. Ei,1 is still sealed}
9: Output pi.

10: end if
11: else {Responder is trying to cheat}
12: Output �.
13: end if

3.4.2 Proof of Security

In this section we give the proof that Protocol 3.1 securely realizes Pollster-Immune 3
4 -CRRT in the UC

model. The proof follows the standard outline for a UC proof, as described in Secton 3.2.4.
We’ll deal separately with the case whenA corrupts the pollster, P, and when it corrupts the responder, R

(we consider only static corruption, where the adversary must decide ahead of time which party to corrupt).
The proof that the views of Z in the real and ideal worlds are identical is by exhaustive case analysis.

56 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Protocol 3.1b Pollster-Immune 3
4 -CRRT (Responder executing Vote x)

Input: a bit x
1: Choose two random bits r0, r1 ∈R {0, 1}
2: Wait to receive envelopes (E0,0, E0,1) and (E1,0, E1,1) from pollster.
3: Open envelopes E0,r0 and E1,r1 {A random envelope from each pair}
4: if there exists i ∈ {0, 1} s.t. Ei,ri contains 1− x and E1−i,r1−i contains x then
5: Let r2 ← i
6: else {both E0,r0 and E1,r1 contain the same bit}
7: Choose a random bit r2 ∈R {0, 1}
8: end if
9: Open envelope Er2,1−rr2 {the remaining unopened envelope in the pair r2}.

10: if Er2,1−rr2 and Er2,rr2 contain different bits then
11: Send (E0,0, E0,1) and (E1,0, E1,1) back to pollster. {Note that one envelope will remain sealed}
12: else {Pollster tried to cheat}
13: Output �.
14: end if

A corrupts P

The ideal-world simulator I, proceeds as follows:

1. I waits to receive c, the outcome of the poll from the ideal functionality. I now begins simulating
F (DE) and R (the simulated R follows the protocol exactly as an honest party would). The simulation
runs until P sends four envelopes as required by the protocol (up to this point R did not participate
at all in the protocol).

2. I’s simulation now depends on the values in the envelopes created by P:

Case 2.1: If both pairs of envelopes are valid (contain a 0 and a 1), I chooses one of the pairs at random
and simulates opening the envelope in the pair that contains c and both envelopes in the other
pair (there is an assignment to the random coins of R which would have this result in the real
world). It then simulates the return of all four envelopes to P.

Case 2.2: If both pairs of envelopes are invalid, I simulates R halting (this would eventually happen in a
real execution as well).

Case 2.3: If exactly one pair of envelopes is invalid, denote the value in the invalid pair by z.

Case 2.3.1: If c = z, I simulates opening both envelopes in the valid pair and a random envelope in the
invalid pair (depending on the random coins of R, this is a possible result in the real world).
It then simulates the return of all four envelopes to P

Case 2.3.2: If c 6= z, I simulates R halting (depending on the random coins of R, this is also a possible
result in the real world).

3. I continues the simulation until A halts.

Note that throughout the simulation, all simulated parties behave in a manner that is feasible in the real
world as well. Thus, the only possible difference between the views of Z in the ideal and real worlds is the
behavior of the simulated R, which depends only on the contents of the four envelopes sent by P and the
output of the ideal functionality (which in turn depends only on b). It is easy (albeit tedious) to go over all
32 combinations of envelopes and input, and verify that the distribution of R’s output in both cases (the
real and ideal worlds) are identical. We enumerate the basic cases below. All other cases are identical to one
of the following by symmetry:

Case 1: A sends two valid pairs of envelopes. Assume it sends
b 1-b

b 1-b
(the other combinations follow by

symmetry). I returns the following distribution (“?” denotes a sealed envelope):

3.4. A POLLSTER-IMMUNE 3
4 -CRRT PROTOCOL 57

(a) With probability 3
4 (c = b) it selects uniformly from{

b ?

b 1-b
,

b 1-b

b ?

}
(b) With probability 1

4 (c 6= b) it selects uniformly from{
? 1-b

b 1-b
,

b 1-b

? 1-b

}

In the real world, the order of envelopes opened by R would be distributed uniformly from one of the
following sets (each with probability 1

4):

(a)

{
1st ?

3rd 2nd

}

(b)

{
1st ?

2nd 3rd
,

1st 3rd

2nd ?

}

(c)

{
3rd 1st

2nd ?

}

(d)

{
3rd 1st

? 2nd
,

? 1st

3rd 2nd

}

Note that the observed result is distributed identically in both cases.

Case 2: A sends two invalid pairs of envelopes: in this case, in both the real and ideal worlds the adversary
will see the responder halting with probability 1.

Case 3: A sends one valid and one invalid pair of envelopes:

Case 3.1: A sends
b b

b 1-b
(the cases in which the rows or the columns are transposed are symmetric).

The distribution of the returned envelopes in the ideal world is:

i. With probability 3
4 (c = b) it selects uniformly from{

b ?

b 1-b
,

? 1-b

b 1-b

}
ii. With probability 1

4 (c 6= b) it halts.

In the real world, the order of envelopes opened by R would be distributed uniformly from one of
the following sets (choosing each set with probability 1

4 , and an element within the set uniformly
at random); the elements marked with † lead to R halting:

i.

{
1st ?

3rd 2nd

}

ii.

 1st ?

2nd 3rd
,

1st 3rd

2nd ?

†
iii.

 ? 1st

2nd 3rd
,

3rd 1st

2nd ?

†
iv.

{
? 1st

3rd 2nd

}

58 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Note that in both worlds R halts with probability 1
4 , and otherwise the returned envelopes are

identically distributed.

Case 3.2: A sends
1-b 1-b

b 1-b
(the cases in which the rows or the columns are transposed are symmetric).

The distribution of the returned envelopes in the ideal world is:

i. With probability 1
4 (c 6= b) it selects uniformly from{

1-b ?

b 1-b
,

? 1-b

b 1-b

}
ii. With probability 3

4 (c = b) it halts.

In the real world, the order of envelopes opened by R would be distributed uniformly from one of
the following sets (choosing each set with probability 1

4 , and an element within the set uniformly
at random); the elements marked with † lead to R halting:

i.

 1st ?

3rd 2nd
,

1st 3rd

? 2nd

†
ii.

 1st 3rd

2nd ?

†
iii.

 ? 1st

3rd 2nd
,

3rd 1st

? 2nd

†
iv.

 3rd 1st

2nd ?

†
Note that in both worlds R halts with probability 3

4 ; if it does not halt the returned envelopes
are identically distributed.

A corrupts R

The ideal-world simulator I, proceeds as follows:

1. I waits to receive v and r from the ideal functionality (in response to the Query command sent by
the ideal P).

2. I simulates R receiving four envelopes. The remainder of the simulation depends on the values of v
and r:

Case 2.1: If v = 1, I chooses a uniformly random bit t. The first envelope R opens in the first pair will
have the value t, and the first envelope opened in the second pair will have the value 1− t. The
values revealed in the remaining envelopes will always result in a valid pair.

Case 2.2: If v = 0, The first envelope R opens in each pair will have the value r, and the remaining envelopes
the value 1− r.

3. I continues the simulation until R sends all four envelopes back to P. If R opened exactly three
envelopes, I sends Vote b to the ideal functionality, where b is calculated as by the pollster in the
protocol description. If R did not open exactly three envelopes, I sends the Halt command to the
ideal functionality.

Note that throughout the simulation, all simulated parties behave in a manner that is feasible in the
real world as well. Furthermore, the outputs of the ideal and simulated P are always identical. Thus, the
only possible difference between the views of Z in the ideal and real worlds is the contents of the envelopes
opened by R. In the real world, the envelope contents are random. In the ideal world, v and r are i.i.d.

3.5. A RESPONDER-IMMUNE 2
3 -CRRT PROTOCOL 59

uniform bits. Therefore the order in which the envelopes are opened does not matter; any envelope in the
first pair is independent of any envelope in the second. Hence, the distributions in the ideal and real worlds
are identical.

3.5 A Responder-Immune 2
3-CRRT Protocol

3.5.1 Formal Specification

The formal specification is given as Protocol 3.2 (see Section 3.3.2 for an informal description). In the
description of the protocol, we use the shorthand “generate an envelope” to mean sending a corresponding
Seal command to F (DE), and “send an envelope” to mean sending a corresponding Send command to
F (DE).

Protocol 3.2a Responder-Immune 2
3 -CRRT (Pollster)

1: Wait to receive envelopes E1, E2, E3 from responder.
2: Choose a random index j ∈R {1, 2, 3}
3: Open envelope Ej . Denote the contents ej .
4: Send j to responder.
5: Wait to receive an index k from responder. Denote ` the index of the third envelope (` /∈ {j, k}).
6: Open envelope Ek. Denote the contents ek.
7: if ej 6= ek then
8: Return the envelope E` to responder. {the third, unopened, envelope}
9: Output ej .

10: else {responder tried to cheat}
11: Open envelope E`. Denote its contents e`.
12: if e` = ej then {all three envelopes contain the same value}
13: Choose a bit x′ ∈ B such that Pr[x′ = ej] = 2

3 .
14: Output x′.
15: else
16: Output ej .
17: end if
18: end if

Protocol 3.2b Responder-Immune 2
3 -CRRT (Responder)

Input: a bit x
1: Choose a random index i ∈R {1, 2, 3}
2: Create three envelopes E1, E2, E3. Envelope Ei will contain 1 − x. For i′ ∈ {1, 2, 3} \ {i} envelope Ei′

will contain x.
3: Send envelopes E1, E2, E3 to pollster.
4: Wait to receive an index j from pollster.
5: if i = j then
6: Choose a random k ∈R {1, 2, 3} \ {i}
7: else {i 6= j}
8: Let k ← i
9: end if

10: Send k to pollster. Denote ` the index of the third envelope (` /∈ {j, k}).
11: Wait to receive E` from pollster
12: if pollster did not send E` or E` was opened then
13: Output �. {pollster tried to cheat}
14: end if

60 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

3.5.2 Proof of Security

Denote the pollster P and the responder R. The proof here also follows the outline given in Section 3.2.4.
As in the previous section, we’ll deal separately with the case when A corrupts P and when it corrupts R.

A corrupts P

When the pollster is corrupted, I must simulate the responder and the ideal functionality F (DE). Since I
does not know the honest responder’s input, it cannot simulate the honest responder simply by following the
protocol. However, it does receive c from the ideal CRRT functionality (in response to the Vote b command
sent by the ideal responder).

Note that the only information the pollster receives about the responder’s input is in the contents of
the envelopes it opens and the index k sent by R in step 10 of the protocol. Since I simulates F (DE), it
can “retroactively” set the contents of each envelope at the moment it is opened by P. The idea behind
the simulation is that when P acts honestly, c contains sufficient information for I to simulate R exactly.
When P is dishonest, I can use the Test and Reveal commands (depending on what P does) to gain
additional information; this will cause the ideal CRRT functionality to halt with some probability, but an
honest responder would also halt in the real world with the same probability.

More formally, I begins the simulation by “sending” P three envelopes (simulating the corresponding
messages from F (DE) to P). Internally, the contents of all three envelopes are “uncommitted”. I “commits”
to the contents of an envelope if P requests to open an envelope whose value is still uncommitted, or when
P sends an index j (corresponding to step 4 in the protocol). When a committed envelope is opened, I
will always reveal the committed value (note that once an envelope is committed, I will never change the
committed value). It remains to describe how I determines the contents to which the envelopes will be
committed and the response to the index j:

Case 1: P opens an envelope with index e1, and all three envelopes are still uncommitted. In this case I
commits the value of envelope e1 to c.

Case 2: P opens an uncommitted envelope e2, and exactly one envelope (e1) is already committed to the
value c. Denote e3 the index of the third envelope. In this case I sends Test c to the ideal CRRT
functionality and waits for the response:

Case 2.1: The response to the Test command is ⊥. In this case, I commits the e2 to contain 1−c (envelope
e3 remains uncommitted).

Case 2.2: The response to the Test command is c. In this case, I commits e2 to contain c and the envelope
e3 to contain 1− c (at this point, all three envelopes are committed).

Case 3: P opens an uncommitted envelope e3 and both remaining envelopes (e1 and e2) are committed. In
this case, I sends the Reveal command to the ideal CRRT functionality and commits e3 to contain
the responder’s input.

Case 4: P sends j = e1 to R and the other two envelopes are still uncommitted. In this case, I chooses a
uniformly random value k ∈R {1, 2, 3}\{j}. Let e2 = k and e3 be the index of the remaining envelope.
I commits envelope e2 to 1− c. If e1 is not already committed, I commits the value of envelope e1 to
c. Envelope e3 still remains uncommitted. I simulates R returning the index k.

Case 5: P sends j = e2 to R, j is uncommitted and exactly one of the other envelopes is committed (denote
its index e1). Let e3 be the index of the remaining (uncommitted) envelope. Note that the contents of
e1 must be c, since P must have previously opened an uncommitted envelope when all three envelopes
were uncommitted, hence I would have acted according to case 1 in the simulation. I sends Test c to
the ideal CRRT functionality and waits for the response:

Case 5.1: The response to the Test command is ⊥. In this case, I commits e2 to 1− c. I now sends a Test
c command to the ideal CRRT functionality:

Case 5.1.1: The response to the second Test command is ⊥. In this case, I sets k ← e1. Note that the
third envelope is still uncommitted.

3.5. A RESPONDER-IMMUNE 2
3 -CRRT PROTOCOL 61

Case 5.1.2: The response to the second Test command is c. In this case, I sets k ← e3 to be the index of
the third envelope, and commits the envelope e3 to c (all three envelopes are now committed).

Case 5.2: The response to the Test command is c. In this case, I commits e2 to c, sets k ← e3 and commits
the envelope e3 to 1− c (at this point, all three envelopes are committed).

I simulates R responding with the index k.

Case 6: P sends j = e1 to R, e1 is committed to a value c and exactly one of the other envelopes is committed
(denote its index e2, and that of the remaining envelope e3). Note that the value of e2 must be 1− c
(otherwise all three envelopes would already be committed). In this case, I sends Test 1 − c to the
ideal CRRT functionality and waits for the response:

Case 6.1: The response to the Test command is ⊥. In this case, I sets k ← e2. Note that the third envelope
is still uncommitted.

Case 6.2: The response to the Test command is 1− c. In this case, I sets k ← e3 and commits envelope e3

to 1− c (all three envelopes are now committed).

I simulates R responding with the index k.

Case 7: P sends j = e3 to R, e3 is uncommitted and both of the other envelopes are already committed. Note
that they must be committed to the values c and 1 − c (otherwise all three envelopes would already
be committed). I sends the Reveal command to the ideal CRRT functionality and commits e3 to be
the responder’s input, x. I sets k to be the index of the previously committed envelope whose value
was 1− x and simulates R responding with the index k.

We can assume w.l.o.g. that the environment’s view of the protocol consists of its random coins, the
messages received from F (DE) and R and any output by R at the end of the protocol (R outputs nothing
if the protocol completes successfully, and � if it was aborted prematurely). This is because the messages
sent by P and the responder’s input are all deterministic functions of this view.

We claim that for any value of the environment’s random coins, its views in the real and ideal worlds are
identically distributed (where the distribution is over the random coins of the real-world responder and the
ideal-world simulator, respectively).

Fix some value of the random coins for the environment. Denote x the value of the responder’s input
(determined by the environment’s random coins). Note that the decision to open an envelope or to send an
index j to the responder is a deterministic function of the environment’s coins, the contents of previously
opened envelopes and the response to a previously sent index (if there was one). Thus, to show the views are
identical, it is enough to show that the contents of the opened envelopes and the response to j are identically
distributed.

Note that the only actions P can perform that may have an effect on the these values are opening a
previously unopened envelope and sending the index j to R. We’ll call these relevant actions. Moreover,
each relevant action can be performed only once (if we consider opening each of the three envelopes a separate
action). Hence, we can exhaustively consider all possible permutations of the adversary’s relevant actions
and their subsets. Since, in the ideal-world simulation, opening a committed envelope will always show the
previously committed value, while an uncommitted envelope’s value is never seen (it will be committed at the
moment it is opened), we can ignore the cases in which the pollster opens previously committed envelopes
as long as we show that the distribution of committed values is identical to that in the real world (where
all three envelopes are committed before sending them to the pollster). Below, we give an exhaustive case

analysis. To help clarify the presentation, we tag each case with a pictoral representation: x signifies

an uncommitted envelope being opened, ? signifies an envelope that has not yet been committed, c

signifies an envelope committed to the bit c and ∗ an envelope committed to any bit. The notation
j→

∗

signifies that this is the envelope whose index j is sent to the responder, while
j

∗ and
k

∗ signify that this
was the envelope whose index was previously sent as j or received as k (respectively).

62 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Case 1: x ? ? P opens an envelope e1, all three envelopes are still unopened and P has not yet sent an
index to R, In the real-world, e1 will contain x with probability 2

3 and 1− x with probability 1
3 .

In the ideal world, this corresponds to case 1 in the simulation and e1 will contain the value c sent
by the CRRT functionality (which is x with probability 2

3 and 1 − x with probability 1
3). No other

envelopes will be committed by I.

Case 2: c x ? P opens an envelope e2, envelope e1 has already been opened (a value c was revealed),
envelope e3 has not been openend and P has not yet sent an index to R. In the ideal world, this
situation matches case 2 in the simulation, hence the simulator would send Test c to the CRRT
functionality.

Case 2.1: c = x. In this case, in the real-world envelopes e2 and e3 contain c and 1− c in a random order,
hence P will see c with probability 1

2 on opening e2. If it sees c, then no matter what further
actions are taken by P, R will output � (since at least one of the envelopes containing x must be
returned unopened to R in order for the protocol to terminate successfully).
In the ideal world, the response to the Test c command would be c with probability 1

2 . Therefore,
e2 will contain c with probability 1

2 . If it does then e3 will also be committed 1− c (as would be
the case in the real world) and R will output �. If it does not e3 will remain uncommitted at
this point and the output of R will be determined by the subsequent actions of P (as it would be
in the real world as well).

Case 2.2: c = 1 − x. In this case, the real-world envelopes e2 and e3 both contain x = 1 − c (hence 1 − c
will be revealed with probability 1 when opening e2. In the ideal world, the response to Test c
will be ⊥ with probability 1, hence e2 will also contain 1− c. e3 will remain uncommitted at this
point.

Case 3: c 1-c x or
k

c
j

∗ x or
j

∗
k

∗ x
P opens an envelope e3; the other two envelopes (e1 and e2) satisfy at least one of the following
conditions:

• Both e1 and e2 have both been opened and contain c and 1− c, respectively.
• e1 was opened and contains the value c, then the index j = e2 was sent to R and the response

was k = e1.
• The index j = e1 was sent to R and the response was k = e2.

In the real-world, envelope e3 would always contain x. Note that no matter what actions are later
taken by P, R will always output � in the real-world since at least one envelope must be returned
unopened for the protocol to terminate successfully.
In the ideal world, this corresponds to case 3 in the simulation; I would send the Reveal command
to the ideal CRRT functionality and set the value of e3 to be x (as in the real-world). R would output
�.

Case 4:
j→

∗ ? ? P sends an index j to R and either e1 = j is the only opened envelope or none of the
envelopes has been opened. In the real world, the response k will be chosen uniformly from {1, 2, 3}\j.
In the ideal world, this corresponds to case 4 in the simulation, hence the k will be chosen with the
same distribution.
In the real world, envelope e1 contains x with probability 2

3 and 1−x with probability 1
3 , while envelope

k will always contain the complement of the bit in e1. In the ideal world, at this point e1 is committed
to c and e2 to 1− c, so the contents of both envelopes are identically distributed in the real and ideal
worlds.

Case 5: c
j→

? ? P sends an index j to R and exactly one envelope (e1 6= j) has been opened and contains
the value c. Denote e2 = j and e3 the index of the remaining envelope. In the ideal world, this
corresponds to case 5, and I would send a Test c command to the ideal CRRT functionality.

3.5. A RESPONDER-IMMUNE 2
3 -CRRT PROTOCOL 63

Case 5.1: c = x. In the real world, this means the unopened envelopes contain c and 1 − c in a random
order. With probability 1

2 , j contains c and e3 contains 1− c, hence the responder would always
respond with k = e3. With probability 1

2 envelope j contains 1− c, in which case with probability
1
2 the responder would respond with k = e3 and with probability half k = e1. In summary, k = e3

with probability 3
4 and k = e1 with probability 1

4 . Note that if k = e3, the responder will output
� no matter what actions the pollster subsequently takes, since it would expect envelope e1 to be
returned unopened.
In the ideal world, the Test c command will return c with probability 1

2 , in which case I will set
k = e3. With probability 1

2 the Test c command will return ⊥, in which case I sends a second
Test c command. With probability 1

2 the second command will return c, in which case k = e3

and with probability 1
2 it will return ⊥, in which case k = e1. The distribution for k is identical

to that in the real-world, and the cases in which R outputs � will also cause the responder in the
real world to eventually output �.
Note that in the both the real and ideal worlds, conditioned on k = e3 the contents of envelopes
e2 and e3 are always complements and e2 contains c with probability 1

3 . Conditioned on k = e1,
e2 always contains 1 − c in both the real and ideal worlds (I does not yet commit to e3 in this
case).

Case 5.2: c = 1 − x. In the real world, this means both unopened envelopes contain 1 − c. Hence, the
response to j will always be k = e1. In the ideal world, the response to both Test c commands
will always be ⊥, hence I will always set k = e1 and commit e2 to 1− c.

Case 6:
j→

c 1-c ? P sends j = e1 to R, envelope j was opened to a value c, envelope e2 was opened to
a value 1 − c and envelope e3 is still unopened. In the ideal world, this corresponds to case 6 in the
simulation, hence I will send a Test 1− c to the ideal CRRT functionality.

Case 6.1: c = x. In this case, e3 contains c in the real world, and the responder will always answer with
k = e2. In the ideal world, the response to the Test 1− c command will always be ⊥, hence the
responder will always answer with k = e2 (leaving e3 uncommitted).

Case 6.2: c = 1− x. In this case, e3 contains 1− c in the real world and the responder will answer k = e2

with probability 1
2 and k = e3 with probability 1

2 . Note that if k = e3, then the responder will
always eventually output �, since it will expect e2 to be unopened.
In the ideal world, the response to the Test 1 − c command is ⊥ with probability 1

2 (in which
case k = e2, and 1 − c with probability 1

2 , in which case k = e3, I commits e3 to 1 − c and and
R outputs �.

Case 7: c 1-c
j→

? P sends j = e3 to R, j has not been opened, envelope e1 was opened and contained c and
envelope e2 was opened and contained 1− c. In the real world, envelope e3 will always contain x, and
the responder will always eventually ouput � since it will expect either e1 or e2 to remain unopened.

In the ideal world, this corresponds to case 6 in the simulation. I will send the Reveal command to
the ideal CRRT functionality and simulate the responder in the real world with the revealed envelope
contents. Thus, the resulting view will be identically distributed to that in the real world.

A corrupts R

1. I runs the simulation until R sends three envelopes. It then sends the Vote b command to the ideal
functionality, where b is the majority of the envelope contents.

2. I waits to receive c, the poll response, from the ideal functionality. It then chooses a random index j
from the envelopes whose contents are c (if none of the envelopes contain c, I chooses j at random).

3. P sends j to R, and I continues the simulation (simulating an honest P exactly following the protocol)
until A terminates.

64 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

This simulation is completely identical to the real-life case, except in the way P chooses the index j.
Whereas in real life j is chosen at random, in the ideal-world simulation j is chosen according to the poll
result. However, a simple calculation shows that j is distributed uniformly in the ideal world as well.

3.6 Strong CRRT Protocols

Ideally, we would like to have CRRT protocols that cannot be biased at all by malicious responders, while
perfectly preserving the responder’s deniability, even against malicious pollsters. Unfortunately, the protocols
described in Section 3.3 do not quite achieve this. At the expense of increasing the number of rounds, we
can get arbitrarily close to the Strong-CRRT functionality defined in Section 3.2.1.

Consider protocol 3.3, in which the pollster and responder use a pollster-immune p-CRRT protocol (whose
ideal functionality is denoted F (pCRRT)) r times, one after the other (with the responder using the same
input each time). The pollster outputs the majority of the subprotocols’ outputs. If the responder halts at
any stage, the pollster uses uniformly random bits in place of the remaining outputs (this protocol is a direct
adaptation of a classic 1√

r
-strongly-fair coin flipping protocol [24]).

Protocol 3.3a Almost-Strong CRRT (Pollster)
1: Let flag ← true
2: for 1 ≤ i ≤ r do
3: if flag then {Responder hasn’t halted so far}
4: Send a Query command to F (pCRRT)

i (instance i of pollster-immune p-CRRT functionality).
5: Wait to receive output bi from F (pCRRT)

i .
6: if bi =⊥ then {Responder halted}
7: Let flag ← false
8: Let bi

←
R {0, 1}

9: end if
10: else {Responder halted in a previous round}
11: Let bi

←
R {0, 1}

12: end if
13: end for
14: Output maj {b1, . . . , br}

Protocol 3.3b Almost-Strong CRRT (Responder)
Input: a bit x

1: for 1 ≤ i ≤ r do
2: Send a Vote x command to F (pCRRT)

i (instance i of pollster-immune p-CRRT functionality).
3: end for

Corrupt Responder. Protocol 3.3 gives a corrupt responder at most O(1√
r
) advantage over an honest re-

sponder. More formally, let q(A) be the probability that the pollster, running protocol 3.3a, outputs 1 when
interacting with a responder A (running an arbitrary protocol). Denote q .= q(R(1)) be the probability the
pollster outputs 1 when both the pollster and responder are honest (note that since the entire protocol is
symmetric with respect to the responder’s input, we can consider w.l.o.g. an adversary that attempts to
bias the result towards 1). Then:

Lemma 3.1. For any adversary A∗ corrupting the responder, the advantage of the adversary is q(A∗)− q =
O(1√

r
).

3.6. STRONG CRRT PROTOCOLS 65

Proof. Intuitively, this is because the only advantage an adversary can gain over the honest user is halting
at some round i. However, halting affects the result only if the other r− 1 rounds were balanced (this is the
only case in which the outcome of the ith round affects the majority). This occurs with probability O(1√

r
).

More formally, we will bound the advantage of a slightly more powerful type of adversary: one that runs
Protocol 3.3b honestly (with input 1) until step 3 (the end of the loop), then can choose an arbitrary i and
set bi ← 1. This type of adversary is at least as powerful as a “real” adversary interacting with the honest
pollster since, given a “real” adversary A, we can achieve an advantage at least as large by running the
protocol with the new adversary A′, setting i to be the round at which A halted. Let b(X)

j be the value of bit

bj when the pollster interacts with an adversary X. Then for all 1 ≤ j < i, Pr[b(A)
j = 1] = p = Pr[b(A

′)
j = 1],

for i < j ≤ r, Pr[b(A)
j = 1] = 1

2 < p = Pr[b(A
′)

j = 1] while Pr[b(A)
i = 1] ≤ 1 = Pr[b(A

′)
i = 1]. Hence,

Pr[maj
{
b
(A)
1 . . . , b

(A)
r

}
= 1] ≤ Pr[maj

{
b
(A′)
1 . . . , b

(A′)
r

}
= 1].

Note that changing a single bit from 0 to 1 can only change the result the remaining bits have an equal
number of zeroes and ones. Since b1, . . . , br are i.i.d and Pr[bj = 1] = p for all j,

Pr

∑
j 6=i

bj =
r − 1

2

 =
(

r − 1
1
2 (r − 1)

)
p

1
2 (r−1)(1− p) 1

2 (r−1) (3.6.1)

≤ O
(

1√
r − 1

)
2(r−1)H(1

2)p
1
2 (r−1)(1− p) 1

2 (r−1) (3.6.2)

≤ O
(

1√
r

)
(3.6.3)

where H(α) .= −α logα− (1− α) log (1− α) is the entropy function, (3.6.2) uses the approximation
(
n
αn

)
=

(1±O(1/n))C 1√
n

2nH(α) (C is a constant depending on α) and (3.6.3) derives from the fact that H(1
2) = 1

and px(1− p)x has a maximum at p = 1
2 for all x > 0.

Corrupt Pollster. Since Protcol 3.3 uses a pollster-immune CRRT protocol as a subprotocol, and the pollster
does not interact in any other way with the responder, a corrupt pollster cannot actively gain additional
information about the responder’s input.

We must still show that the pollster does not passively gain too much information about the responder’s
input. In the ideal world, the pollster only sees a single bit of information, corresponding to whether
the majority of the p-CRRT subprotocols returned 1. In the real world, the pollster receives additional
information: the number of p-CRRT subprotocols that returned 1.

However, it turns out that this information does not help the pollster to distinguish between the case
where the responder’s input is 0 and the case where it is 1. To see this, consider the distributions X0 and X1,
representing the distributions of the ideal pollster’s view when the responder’s input is 0 and 1, respectively.
The probability that the pollster can guess b, given a sample X ∼ Xb, is a measure of the information the
pollster is “allowed” to have about b. We denote the corresponding distributions for the real world Y0 and
Y1, where Yb = B(r, bp+ (1− b)(1− p)) is the binomial distribution.

The largest possible difference between the probabilities that two probability distributions can assign to
an event (hence, the maximum probability of correctly determining the source of sample taken from one of
them) is the total variation distance between the two distributions (denoted δ(D0,D1)

We show the total variation distance between X0 and X1 (the ideal case) is identical to the distance

66 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

between Y0 and Y1 (the real case). For b ∈ {0, 1}, let Xb ∼ Xb and Yb ∼ Yb. Then:

δ(X0,X1) =
1
2

(|Pr[X0 = 0]− Pr[X1 = 0]|+ |Pr[X1 = 1− Pr[X0 = 1]]|)

=
1
2

br/2c∑
i=0

[(
r

i

)
|pi(1− p)r−i − pr−i(1− p)i|

]
+

r∑
i=dr/2e

[(
r

i

)
|pi(1− p)r−i − pr−i(1− p)i|

]
=

1
2

(
r∑
i=0

[(
r

i

)
|pi(1− p)r−i − pr−i(1− p)i|

])

=
1
2

r∑
i=0

|Pr[Y1 = i]− Pr[Y0 = i]|

= δ(Y0,Y1)

Limitations. The problem with using Protocol 3.3 is that the probability that an honest responder will
get the result she wants tends to 1 as the number of rounds grows. In order to obtain a q-Almost-Strong
CRRT, we must use a p-CRRT protocol where p = 1

2 +O(1√
r
) (we discuss possibilities for construction such

a protocol in Section 3.7.1).
This adds further complexity to the protocol (e.g., the protocol in Section 3.7.1 requires Ω(1

ε) bubbles
on the scratch-off card for p = 1

2 + ε). Thus, this multi-round protocol is probably not feasible in practice.

3.6.1 Lower Bounds and Impossibility Results

In this section we attempt to show that constructing practical strong CRRT protocols is a difficult task. We
do this by giving impossibility results and lower bounds for implementing subclasses of the strong CRRT
functionality. We consider a generalization of the strong p-CRRT functionality defined in Section 3.2.1,
which we call (p, q)-CRRT. The (p, q)-CRRT functionality can be described as follows:

Vote b The issuer of this command is the responder. On receiving this command the functionality tosses
a weighted coin c, such that c = 0 with probability p. It then outputs b ⊕ c to the pollster. The
functionality supplies the responder with exactly enough additional information so that she can guess
c with probability q ≥ p.

In the definition of strong CRRT given in Section 3.2.1, we specify exactly how much information the pollster
learns about the responder’s choice, but leave completely undefined what a cheating responder can learn
about the pollster’s result. The (p, q)-CRRT functionality quantifies this information: in a (p, p)-CRRT, the
responder does not gain any additional information (beyond her pre-existing knowledge that the pollster’s
result will equal her choice with probability p). In a (p, 1)-CRRT, the responder learns the pollster’s result
completely. We show that (p, p)-CRRT implies oblivious transfer (and is thus impossible in the DE model),
while (p, 1)-CRRT implies strong coin-flipping (and thus we can lower-bound the number of rounds required
for the protocol). For values of q close to p or close to 1, the same methods can still be used to show lower
bounds.

(p, q)-CRRT when q is close to p:

First, note that when p = q we can view the (p, q)-CRRT functionality as a binary symmetric channel (BSC)
with error probability 1−p. Crépeau and Kilian have shown that a protocol for Oblivious Transfer (OT) can
be constructed based on any BSC [30]. However, it is impossible to implement OT in the Distinguishable
Envelope (DE) model [53]. Therefore (p, p)-CRRT cannot be implemented in the DE model. It turns out
that this is also true for any q close enough to p. This is because, essentially, the (p, q)-CRRT functionality is
a (1− q, 1− p)-Passive Unfair Noisy Channel (PassiveUNC), as defined by Damg̊ard, Kilian and Salvail [34].
A (γ, δ)-PassiveUNC is a BSC with error δ which provides the corrupt sender (or receiver) with additional
information that brings his perceived error down to γ; (i.e., a corrupt sender can guess the bit received by

3.7. DISCUSSION AND OPEN PROBLEMS 67

the receiver with probability 1−γ, while an honest sender can guess this bit only with probability 1−δ). For
γ and δ that are close enough (the exact relation is rather complex), Damg̊ard, Fehr, Morozov and Salvail
[32] show that a (γ, δ)-PassiveUNC is sufficient to construct OT. For the same range of parameters, this
implies that realizing (p, q)-CRRT is impossible in the DE model.

(p, q)-CRRT when q is close to 1:

When q = 1, both the pollster and the responder learn the poll result together. A (p, 1)-CRRT can be used
as a protocol for strongly fair coin flipping with bias p − 1

2 . In a strongly fair coin flipping protocol with
bias ε, the bias of an honest party’s output is at most ε regardless of the other party’s actions — even if
the other party aborts prematurely. If q is close to 1, we can still construct a coin flipping protocol, albeit
without perfect consistency. The protocol works as before, except that the responder outputs his best guess
for the pollster’s output: both will output the same bit with probability q.

A result by Cleve [24] shows that even if all the adversary can do is halt prematurely (and must otherwise
follow the protocol exactly), any r-round protocol in which honest parties agree on the output with probability
1
2 + ε can be biased by at least ε

4r+1 . Cleve’s proof works by constructing 4r + 1 adversaries, each of which
corresponds to a particular round. An adversary corresponding to round i follows the protocol until it reaches
round i. It then halts immediately, or after one extra round. The adversary’s decision is based only on what
the ourput of an honest player would be in the same situation, should the other party halt after this round.
Cleve shows that the average bias achieved by these adversaries is ε

4r+1 , so at least one of them must achieve
this bias. The same proof also works in the DE model, since all that is required is that the adversary be able
to compute what it would output should the other player stop after it sends the messages (and envelopes)
for the current round. This calculation may require a party to open some envelopes (the problem being that
this might prevent the adversary from continuing to the next round). However, an honest player would be
able to perform the calculation in the next round, after sending this round’s envelopes, so it cannot require
the adversary to open any envelopes that may be sent in the next round.

Cleve’s lower bound shows that a (p, q)-CRRT protocol must have at least q− 1
2

4(p− 1
2)
− 1

4 rounds. Since a
protocol with a large number of rounds is impractical for humans to implement, this puts a lower bound on
the bias p (finding a CRRT protocol with a small p is important if we want to be able to repeat the poll
while still preserving plausible deniability).

This result also implies that it is impossible to construct a (p, 1)-CRRT protocol in which there is a clear
separation between the responder’s choice and the final output. That is, the following functionality, which
we call p-CRRT with confirmation, is impossible to implement in the DE model:

Vote b The issuer of this command is the responder. On receiving this command the functionality outputs
“Ready?” to the pollster. When the pollster answers with “ok” the functionality tosses a weighted
coin c, such that c = 0 with probability p. It then outputs b⊕ c to the pollster and responder.

p-CRRT with confirmation is identical to (p, 1)-CRRT, except that the output isn’t sent until the pollster
is ready. The reason it is impossible to implement is that this functionality can be amplified by parallel
repetition to give a strongly fair coin flipping protocol with arbitrarily small p. Since the amplification is in
parallel, it does not increase the number of rounds required by the protocol, and thus contradicts Cleve’s
lower bound. Briefly, the amplified protocol works as follows: the responder chooses k inputs randomly, and
sends each input to a separate (parallel) instance of p-CRRT with confirmation. The pollster waits until all
the inputs have been sent (i.e., it receives the “Ready?” message from all the instances), then sends “ok”
to all the instances. The final result will be the xor of the outputs of all the instances. Since the different
instances act independently, the bias of the final result is exponentially small in k.

3.7 Discussion and Open Problems

3.7.1 p-CRRT for General p

In this paper we give protols for pollster-immune 3
4 -CRRT and responder-immune 2

3 -CRRT. However, in
practice we sometimes require p-CRRT protocols for different values of p.

68 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

In particular, if we need to repeat the poll (for example, when we use it as a subprotocol in our almost-
strong CCRT protocol (Protocol 3.3), we need the basic protocol to have p closer to 1

2 (in order to maintain
the plausible deniability). Below, we outline some (slightly flawed) ideas for protocols that attempt this.
Finding completely secure protocols for general values of p remains an open question.

Generalizing our pollster-immune protocol to any rational p. The following protocol will work for any rational
p = k

n (assume k > 1
2n): As in Protocol 3.1, the pollster generates two rows of bubbles. One row contains k

“Yes” bubbles and n− k “No” bubbles in random order (this row is the “Yes” row), and the other contains
k “No” bubbles and n− k “Yes” bubbles (this row is the “No” row). The rows are also in a random order.
The responder’s purpose is to find the row matching her choice. She begins by scratching a single bubble
in each row. If both bubbles contain the same value, she “eliminates” a random row (by scratching it out
completely). Otherwise, she “eliminates” the row that does not correspond to her choice. The pollster’s
output is the majority value in the row that was not eliminated. The probability that the pollster’s output
matches the responder’s choice is exactly p.

Unfortunately, this protocol is completely secure only for a semi-honest pollster (one that correctly
generates the scratch-off cards). A malicious pollster can cheat in two possible ways: he can replace one of
the rows with an invalid row (one that does not contain exactly k “Yes” bubbles or exactly k “No” bubbles),
or he can use two valid rows that have the same majority value (rather than opposite majority values).
In both cases the pollster will gain additional information about the responder’s choice. This means the
protocol does not realize the ideal pollster-immune CRRT functionality.

If the pollster chooses to use an invalid row, he will be caught with probability at least 1
2 (1 − p) (since

with this probability the responder will scratch identical bubbles in both rows, and choose to eliminate the
invalid row). We can add “cheating detection” to the protocol to increase the probability of detecting this
attack. In a protocol with cheating detection, the pollster gives the responder ` scratch-off cards rather than
just one (each generated according to the basic protocol). The responder chooses one card to use as in the
basic protocol. On each of the other cards, she scratches off a single row (chosen randomly), and verifies
that it contains either exactly k “Yes” bubbles or exactly k “No” bubbles. She then returns all the cards to
the pollster (this step is necessary to prevent the responder from increasing her chances by trying multiple
cards until one gives the answer she wants). A pollster that cheats by using an invalid row will be caught
with probability 1− 1

` .
A malicious pollster can still cheat undetectably by using two valid rows with identical majorities. This

gives only a small advantage, however, and in practice the protocol may still be useful when p is close to 1
2 .

Generalizing our responder-immune protocol to any rational p. When the pollster’s actions are performed
in view of the responder (in particular, when the responder can see exactly which envelopes are opened by
the pollster), Protocol 3.2 has a straightforward generalization to any rational p = k

n , where k > 1
2n: the

responder uses n (rather than 3) envelopes, of which k contain her choice and n − k contain its opposite.
After the pollster chooses an envelope to open, the responder shows him n − k envelopes that contain the
opposite value.

Note that when this generalized protocol is performed by mail, it does not realize the ideal functionality
defined in Section 3.2.1 (the pollster can cheat by opening additional envelopes before sendng an index to
the responder).

Efficient Generalization to Arbitrary p. We have efficient p-CRRT protocols for specific values of p: p = 3
4

in the pollster-immune case, and p = 2
3 in the responder-immune case. Our generalized protocols are not

very efficient: for p = 1
2 + ε they require Ω(1

ε) envelopes. In a protocol meant to be implemented by humans,
the efficiency of the protocol has great importance. It would be useful to find an efficient general protocol
to approximate arbitrary values of p (e.g., logarithmic in the approximation error).

3.7.2 Additional Considerations

Polling Protocols by Mail. The pollster-immune CRRT protocol requires only a single round; This makes it
convenient to use in polls through the post (it only requires the poll to be sent to the responder, “filled out”
and returned). The responder-immune protocol presents additional problems when used through the post.

3.A. FORMAL DEFINITION OF DISTINGUISHABLE ENVELOPES 69

First, in this case the protocol realizes a slightly weaker functionality than in the face-to-face implementation.
Second, it requires two rounds, and begins with the responder. This means, in effect, that it would require
an extra half-round for the pollster to notify the responder about the existence of the poll. It would be
interesting to find a one-round protocol for the responder-immune functionality as well. It may be useful, in
this context, to differentiate between “information-only” communication (which can be conducted by phone
or email), and transfer of physical objects such as envelopes (which require “real” mail).

Side-Channel Attacks. The privacy of our protocols relies on the ability of the responder to secretly perform
some actions. For instance, in the pollster-immune protocol we assume that the order in which the bubbles
on the card were scratched remains secret. In practice, some implementations may be vulnerable to an attack
on this assumption. For example, if the pollster uses a light-sensitive dye on the scratch-off cards that begins
to darken when the coating is scratched off, he may be able to tell which of the bubbles was scratched first.
Side-channel attacks are attacks on the model, not on the CRRT protocols themselves. As these attacks
highlight, when implementing CRRT using a physical implementation of Distinguishable Envelopes, it is
important to verify that this implementation actually does realize the required functionality.

Dealing With Human Limitations. Our protocols make two assumptions about the humans implementing
them: that they can make random choices and that they can follow instructions. The former assumption
can be relaxed: if the randomness “close to uniform” the security and privacy will suffer only slightly
(furthermore, simple physical aids, such as coins or dice, make generating randomness much easier). The
latter assumption is more critical; small deviations from the protocol can result in complete loss of privacy
or security. Constructing protocols that are robust to human error could be very useful.

Practical Strong CRRT Protocols. As we discuss in Section 3.6.1, for a range of parameters p, q-CRRT is
impossible, and for a different range of parameters it is impractical. For some very reasonable values, such as
3
4 -Strong CRRT, we can approximate the functionality using a large number of rounds, but do not know how
to prove any lower bound on the number of rounds required. Closing this gap is an obvious open question.
Alternatively, finding a physical model in which efficient Strong CRRT is possible is also an interesting
direction.

APPENDIX

3.A Formal Definition of Distinguishable Envelopes

The definition below is a extracted from [53].
Functionality F (DE) models a tamper-evident “envelope”. As long as the envelope is closed, its contents

are completely hidden. Any party can open the envelope and learn its contents. However, the creator of the
envelope will be able to tell whether the envelope was previously opened.

Functionality F (DE) contains an internal table that consists of tuples of the form (id, value, creator, holder, state).
The table represents the state and location of the tamper-evident envelopes. It contains one entry for each
existing envelopes, indexed by the container’s id and creator. We denote valueid, creatorid, holderid and
stateid the corresponding values in the table in row id (assuming the row exists). The table is initially empty.
The functionality is described as follows, running with parties P1, . . . , Pn and ideal adversary I:

Seal (id, value) This command creates and seals an envelope. On receiving this command from party Pi,
the functionality verifies that id has the form (Pi, {0, 1}∗) (this form of id is a technical detail to ensure
that ids are local to each party). If this is the first Seal message with id id, the functionality stores
the tuple (id, value, Pi, Pi, sealed) in the table. If this is not the first Seal with id id, it verifies that
creatorid = holderid = Pi and, if so, replaces the entry in the table with (id, value, Pi, Pi, sealed).

Send (id, Pj) On receiving this command from party Pi, the functionality verifies that an entry for container
id appears in the table and that holderid = Pi. If so, it outputs (Receipt, id, creatorid, Pi, Pj) to Pj
and I and replaces the entry in the table with (id, valueid, creatorid, Pj , stateid).

70 CHAPTER 3. POLLING WITH PHYSICAL ENVELOPES

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table and that holderid = Pi. It sends (Opened, id, valueid, creatorid) to Pi. It also replaces
the entry in the table with (id, valueid, creatorid, holderid,broken).

Verify id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table and that holderid = Pi. It then considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi. Otherwise, it sends (Verified, id,ok) to Pi.

A Note About Notation In the interests of readability, we will often refer to parties “preparing” an
envelope instead of specifying that they send a Seal message to the appropriate functionality. Likewise we
say a party “verifies that an envelope is sealed” when the party sends a Verify message to the functionality,
waits for the response and checks that the resulting Verified message specifies an ok status. We say a
party “opens an envelope” when it sends an Open message to the functionality and waits for the Opened
response.

Chapter 4

Receipt-Free Universally-Verifiable
Voting With Everlasting Privacy

4.1 Introduction

4.1.1 Challenges in Designing Voting Protocols

One of the main problems with traditional systems is that the accuracy of the election is entirely dependent
on the people who count the votes. In modern systems, this usually consists of fairly small committees: if
an entire committee colludes, they can manufacture their own results. Even worse, depending on the exact
setup, it may be feasible to stuff ballot boxes, destroy votes or perform other manipulations.

The problems with assuring election integrity were a large factor in the introduction of mechanical
voting machines, and more recently, optical scan and “Direct Recording Electronic” (DRE) machines. These
perform a function identical to a ballot box and paper ballots, using a different medium: the basic protocol
remains the same. While alleviating some of the problems (such as ballot stuffing), in some cases they
actually aggravate the main one: instead of relying on a large number of election committees (each of which
has a limited potential for harm), their security relies on a much smaller number of programmers. Even
worse, a rogue programmer may be able to change the results of the entire election with virutally no chance
of detection.

There has also been a large amount of more theoretical research, aimed at using cryptographic tools to
define and solve the problems inherent in conducting secure elections. The most important advantage of
cryptographic voting protocols over their physical counterparts is the potential for universal verifiability :
the possibility that every voter (and even interested third parties) can verify that the ballot-counting is
performed correctly. The challenge, of course, is satisfying this property while still maintaining the secrecy
of individual ballots.

A problem that was first introduced with mechanical voting machines, and exacerbated in DRE and
many cryptographic systems, is that part of the protocol must be performed by a machine (or computer),
whose inner workings are opaque to most voters. This can have a serious impact on the trust a voter places
in the results of the election (e.g., “how do I know that when I pushed the button next to candidate A the
machine didn’t cast a vote for B?”). One of the targets recently identified in the cryptographic literature is
to design systems that can be trusted by human voters even if the election computers are running malicious
code.

Another attack on both traditional and cryptographic voting systems is vote-buying and coercion of
voters. To prevent this, we would like a voter to be unable to convince a third party of her vote even if
she wants to do so. This property, called receipt-freeness, is strictly stronger than ballot secrecy, and seems
even harder to achieve simultaneously with universal-verifiability. As is the case for election integrity, it is
much more difficult to design a receipt-free protocol if the voter is required to perform secret calculations
on a computer (e.g., perform an RSA encryption of her vote): the voter may be forced to use an untrusted

71

72 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

computer to perform the calculations (or even one provided by the coercer), in which case the coercer can
learn the secret.

There are also problems specific to the cryptographic case. One of these is that cryptographic proto-
cols are often based on computational assumptions (e.g., the infeasibility of solving a particular problem).
Unfortunately, some computational assumptions may not hold forever (e.g., Adi Shamir estimated that all
existing public-key systems, with key-lengths in use today, will remain secure for less than thirty years [71]).

A voting protocol is said to provide information-theoretic privacy if a computationally unbounded adver-
sary does not gain any information about individual votes (apart from the final tally). If the privacy of the
votes depends on computational assumptions, we say the protocol provides computational privacy. Protocols
that provide computational privacy may not be proof against coercion: the voter may fear that her vote will
become public some time in the future.

While integrity that depends on computational assumptions only requires the assumptions to hold during
the election, privacy that depends on computational assumptions requires them to hold forever. To borrow
a term from Aumann et al. [5], we can say that information-theoretic privacy is everlasting privacy.

A related problem is that we would like to base our voting schemes on assumptions that are as weak
as possible. Existing voting schemes generally require public-key encryption (or very specific computational
assumptions, such as the hardness of computing discrete log in certain groups).

4.1.2 Our Results

In this paper, we present the first universally verifiable voting scheme that can be based on a general
assumption (existence of a non-interactive commitment scheme).

Our protocol also satisfies the following properties:

• It has everlasting privacy (provided the commitment scheme is statistically hiding). To the best of our
knowledge, only one published protocol has this property [27], and this protocol is not receipt-free.

• The protocol does not require human voters to perform any complex operations (beyond choosing a
random string and comparing two strings)

• The integrity of the election is guaranteed even if the DRE is corrupted.

• It is receipt-free. We use a technique from Neff’s voting scheme [62] to achieve receipt-freeness without
requiring complex computation on the voter’s part.

We give a rigorous proof that our protocol is secure in the Universally Composable model (given a universally-
composable commitment scheme). This is a very strong notion of security. We also give a slightly more
efficient protocol based on Pedersen Commitments (this protocol is secure, but not in the UC model, since
Pedersen Commitments are not UC secure1).

One of the central contributions of this paper is a formal definition of receipt-freeness in the general
multi-party computation setting (we also prove that our protocol satisfies this definition). Our definition is
a generalization of Canetti and Gennaro’s definition for an incoercible computation [17]. To the best of our
knowledge, this is the first definition to capture receipt-freeness in the general case (most previous papers
that deal with receipt-freeness do not provide a formal definition at all).

4.1.3 Previous Work on Voting Protocols

The first published electronic voting scheme was proposed by Chaum [19], based on mixes. Loosely speaking,
a mix is a device that hides the correspondence between its inputs and outputs by accepting (encrypted)
inputs in large batches and mixing them before output. This can be used to hide the correspondence between
voters and their votes, allowing each voter to make sure her vote was counted (ensuring the integrity of the
election) while preserving the secrecy of the vote. A strong advantage of this scheme over previous voting
systems (e.g., putting paper slips in ballot boxes) is that the integrity of the vote no longer rests in the hands

1Although the proof of security in the UC model does not directly imply security of the simpler protocol, the proof is
extremely similar and we omit it here.

4.1. INTRODUCTION 73

of a few trustees: every voter can verify that their vote was counted (i.e. it has individual verification).
The privacy of the votes does depend on a small number of trustees (the mixing centers), though. Other
advantages are convenience and speed: a voter can vote from any location with network access, and the
votes are tabulated by computers immediately after they were all cast.

Many additional protocols were suggested since Chaum’s. Almost all use some combination of the
following general techniques:

Mixes Some of the earliest cryptographic voting schemes (such as Chaum’s original voting scheme [19] and
a later scheme by Park et al. [63]) were based on mixes. Sako and Kilian introduced the notion of
universally verifiable mixes [69], which allow external parties to verify that votes were shuffled correctly
without sacrificing privacy (this idea is used in our protocol as well).

Blind Signatures A blind signature (introduced by Chaum in [20]) allows a signer to digitally sign a
document without knowing what was signed. In a voting scheme based on blind signatures, the general
idea is that the voter has her ballot blindly signed by the voting authority, and later publishes the
ballot using an anonymous channel. Although Chaum suggested the use of blind signatures for voting
in his original paper, the first published protocol that makes use of blind signatures was by Fujioka
et al. [40]. A major problem of blind signature schemes is that they require anonymous channels (so
that the voter can publish her signed vote linking the vote to the voter).

Homomorphic A function E is homomorphic if for any x and y in its domain it satisfies E(x)E(y) =
E(x+y). The general idea of a homomorphic voting scheme is for each voter to encrypt her vote using
a public-key homomorphic encryption function, where the public key is published before the election.
Each voter must prove that her encrypted vote is an encryption of a valid vote (the voting schemes
differ on the exact way in which this is done). The encrypted votes are summed using the homomorphic
property of the encryption function (without decrypting them). Finally, a set of trustees cooperate
to decrypt the final tally (the secret key for the encryption scheme is divided between the trustees).
The advantages of using homomorphic schemes are efficiency and verifiability: many operations can be
carried out on the encrypted votes, in public, so they are both verifiable and can be performed during
the voting process (without interaction between the voting authorities). The first protocol of this type
was devised by Cohen (Benaloh) and Fischer [26]. Additional examples of this type of scheme are
[7, 27, 28, 45].

Receipt-Free Voting Only a small fraction of the proposed voting schemes satisfy the property of receipt-
freeness. Benaloh and Tuinstra [7] were the first to define this concept, and to give a protocol that achieves it
(it turned out that their full protocol was not, in fact, receipt free, although their single-authority version was
[45]). Their protocol was based on homomorphic encryption rather than mixes. To satisfy receipt-freeness,
Benaloh and Tuinstra also required a physical “voting booth”: completely untappable channels between the
voting authority and the voter. Sako and Kilian showed that a one-way untappable channel between the
voting authority and the voter is enough [69], and gave a receipt-free mix-type voting scheme based on this
assumption (our protocol makes this assumption as well). Other protocols were also devised, however the
minimal assumption required by protocols that do not use a trusted third party device (e.g., a smart card)
is the one-way untappable channel.

Human Considerations Almost all the existing protocols require complex computation on the part of the
voter (infeasible for an unaided human). Thus, they require the voter to trust that the computer actually
casting the ballot on her behalf is accurately reflecting her intentions. Chaum [21], and later Neff [62],
proposed universally-verifiable receipt-free voting schemes that overcome this problem. Recently, Reynolds
proposed another protocol similar to Neff’s [67].

All three schemes are based in the “traditional” setting, in which voters cast their ballots in the privacy
of a voting booth. Instead of a ballot box the booth contains a DRE. The voter communicates her choice
to the DRE (e.g., using a touch-screen or keyboard). The DRE encrypts her vote and posts the encrypted
ballot on a public bulletin board. It then proves to the voter, in the privacy of the voting booth, that the

74 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

encrypted ballot is a truly an encryption of her intended vote. After all the votes have been cast, the votes
are shuffled and decrypted using mix-type schemes.

Chaum’s protocol uses a two-part ballot. Together, both parts define the vote in a manner readable to
a human. Either part separately, however, contains only an encrypted ballot. The voter chooses one part
at random (after verifying that the ballot matches her intended choice), and this part becomes her receipt.
The other part is destroyed. The ballots are constructed so that in an invalid ballot, at least one of the two
parts must be invalid (and so with probability at least 1

2 this will be caught at the tally stage). Chaum’s
original protocol used Visual Cryptography [61] to enable the human voter to read the complete (two-part)
ballot, and so required special printers and transparencies. Bryans and Ryan showed how to simplify this
part of the protocol to use a standard printer [13, 68].

Neff’s protocol makes ingenious use of zero-knowledge arguments. The idea is that a zero-knowledge
argument system has a simulator that can output “fake” proofs indistinguishable from the real ones. The
DRE performs an interactive zero-knowledge protocol with the voter to prove that the encrypted ballot
corresponds to the correct candidate. The DRE uses the simulator to output a zero-knowledge proof for
every other candidate. The proofs are of the standard “cut-and-choose” variety. In a “real” proof, the DRE
commits, then the voter gives a random challenge and the DRE responds. In the “fake” proofs, the voter
first gives the random challenge and then the DRE commits and responds. The voter only has to make sure
that she gave the challenge for the real candidate after the DRE was committed, and that the challenge
printed on the receipt matches what she gave. Everything else can be publicly checked outside the voting
booth. Since no one can tell from the receipt in which order the commitments and challenges were made,
the zero-knowledge property ensures that they cannot be convinced which of the proofs is the real one.

4.2 The Model

The physical setup of our system is very similar to many existing (non-electronic) voting schemes. Voters
cast their ballots at polling stations. The votes are tabulated for each station separately, and the final tally
is computed by summing the results for all stations.

4.2.1 Basic Assumptions

Human Capability An important property of our protocol is that its security is maintained even if the
computers running the elections are corrupt (and only some of the human voters remain honest). Thus, we
must define the operations we expect a human to perform. We make three requirements from human voters:

1. They can send messages to the DRE (e.g., using a keyboard). We require voters to send a few short
phrases. This should be simple for most humans (but may be a problem for disabled voters).

2. They can verify that two strings are identical (one of which they chose themselves)

3. They can choose a random string. This is the least obvious of the assumptions we make. Indeed,
choosing truly (or even seemingly) uniform random bits is probably not something most humans can
do at will. However, all we actually need are strings with high enough (min) entropy. Achieving this
does seem feasible, using physical aids (coins, dice, etc.) and techniques for randomness extraction. In
our security proofs, in order to clarify the presentation, we will ignore these subtleties and assume the
voters can choose uniformly random strings.

Physical Commitment In order to achieve receipt-freeness, our protocol requires a commitment with
an extremely strong hiding property: The verifier’s view at the end of the commit stage is a deterministic
function of her view before the commit stage (i.e., not only can the view not contain any information about
the committed string, it cannot even contain randomness added by the committer). Such a commitment is
not possible in the “plain” cryptographic model (even with computational assumptions), but can be easily
implemented by physical means (for example, by covering part of the printer’s output with an opaque shield,
so that the voter can see that something has been printed but not what). Note that the integrity of the vote
does not depend on physical commitment, only its receipt-freeness.

4.2. THE MODEL 75

Random Beacon The DRE in our protocol proves the final tally is correct using an interactive zero-
knowledge proof. To make this proof trusted by all the voters, we assumpe the existence of a random beacon.
The random beacon, originally introduced by Rabin [66], replaces a verifier whose messages all consist of
independently distributed, random strings. In practice, the beacon can be implemented in many ways, such
as by some physicial source believed to be unpredictable [58] (e.g., cosmic radiation , weather, etc.), or by
a distributed computation with multiple verifiers. Note that we can simulate the beacon using a random
oracle (this is the Fiat-Shamir heuristic): the entire protocol transcript so far is taken as the index in the
random oracle that is used as the next bit to be sent by the beacons.

4.2.2 Participating Parties

In our description, we consider only a single polling booth (there is no interaction between booths in our
system, apart from the final, public summation of results). Formally, we consider a few classes of participants
in our voting protocol:

Voters There are an arbitrary number of voters participating in the protocol (we will denote the number
of voters by n). Each voter has a secret input (the candidate she wants to vote for).

DRE The protocol has only a single DRE party. The DRE models the ballot box: it receives the votes of
all the voters and computes the final tally at the end. In the ideal model, the DRE has neither input
nor output — its only function is to explicitly model the extra capabilities gained by the adversary
when the DRE is corrupted.

Verifier The verifier is a party that helps verify that the voting protocols are being followed correctly.
Although there can be many verifiers (and voters can be verifiers as well) the verifiers are deterministic
and use only public information, so we model them as a single party. In the ideal model, the verifier
is the party that outputs the final tally (or aborts if cheating is detected).

Adversary The adversary attempts to subvert the voting protocol. We detail the adversarial model in
Sections 4.2.4 and 4.2.5.

4.2.3 Protocol Structure and Communication Model

As is customary in universally-verifiable voting protocols, we assume the availability of a public Bulletin
Board : a broadcast channel with memory. All parties can read from the board and all messages from the
DRE are sent to the bulletin board.

Our voting protocols consist of three phases:

1. Casting a Ballot. In this phase, each voter communicates directly with the DRE over a private,
untappable, channel (inside the voting booth). All communication from the DRE to the voter is
through the bulletin board.

In practice, the voter will not be able to access the bulletin board while in the voting booth. Thus, we
assume there is a separate channel between the DRE and the voter, also with memory (e.g., a printer).
The DRE outputs its messages both to the printer (the printed messages form the voter’s receipt), and
to the bulletin board. This implementation adds an additional stage in which the voter verifies that
the contents of her receipt match the contents on the bulletin board.

We need the physical commitment (see Sec. 4.2.1) only at one point in the Ballot-Casting phase.

2. Tallying the results. This phase begins after all voters have cast their ballots, and in this phase the
results of the vote are revealed. The tallying consists of an interactive protocol between the DRE and a
random beacon, whose only messages are uniformly random strings. This beacon may be implemented
using some public, physical source of unpredictability (e.g. solar flares), by collective coin flipping
of the voters, or of a number of trustees, or via some other mechanism. In practice, a very efficient
method is the Fiat-Shamir heuristic, replacing the beacon’s messages with a secure hash of the entire

76 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

transcript to that point (in the analysis the hash function is modelled as a random oracle). The entire
transcript of the tally phase is sent to the bulletin board.

3. Universal Verification. This phase consists of verifying the consistency of the messages on the bulletin
board. This can be performed by any interested party, and is a deterministic function of the information
on the bulletin board.

4.2.4 Universal Composability

We consider a number of different adversarial models. In the basic model, the adversary can adaptively
corrupt the DRE and the voters (since there are arbitrarily many verifiers, and all are running the same
deterministic function of public information, it is reasonably to assume not all of them can be corrupted).
We formalize the capabilities of the adversary by defining them in the Universally Composable model, using
the ideal voting functionality, F (V). In the ideal world, The DRE does nothing unless it is corrupted. When
the DRE is corrupt, ballots no longer remain secret (note that this must be the case in any protocol where
the voter divulges her vote to the DRE). The integrity of the vote is always maintained. The verifiers have no
input, but get the final output from the functionality (or ⊥ if the functionality was halted by the adversary).

The adversary is allowed to intercept every outgoing message from the functionality, and has the choice of
either delivering the message or sending the Halt command to the functionality (in which case the message
will not be received by other parties).

The ideal functionality realized by our voting scheme accepts only one “honest” command and one
“cheating” command (beyond the special Halt and Corrupt commands that can be sent by the adversary):

Vote c On receiving this command from voter v, the functionality verifies that this is the only Vote com-
mand sent by v. It then:

1. Stores the tuple (v, c) in its internal database.

2. If the DRE is corrupt, the functionality outputs Voted v, c to the adversary.

3. Broadcasts the message Voted v.

4. If all n voters have sent a Vote command, the functionality computes the tally sc
.= |{(v, c′) | c′ = c}|

for all candidates 1 ≤ c ≤ m and outputs the tallies to the verifier.

ChangeVote c, c′ This command can only be sent by a corrupt voter v and only if the DRE is also corrupt.
On receiving this command, the functionality verifies that (v, c) appears in its internal database. It
then replaces this tuple with the tuple (v, c′). This command can be sent after the last voter has voted
and before the final tally is output.

Halt On receiving this command from the adversary, the functionality sends the special message ⊥ to the
verifier to signify an aborted execution and halts.

Corrupt DRE On receiving this command from the adversary, the functionality marks the DRE as cor-
rupted and sends the contents of its internal database to the adversary (revealing all the votes cast so
far).

Corrupt v On receiving this command from the adversary, the functionality marks voter v as corrupted
and sends cv (voter v’s input) to the adversary.

The security, privacy and robustness of our protocol is proven by showing that any attack against the
protocol in the real world can be performed against the ideal functionality in the ideal world (where the
possible attacks are explicitly defined). The formal description of the protocol appears in Section 4.4, and
its proof of security in Section 4.6.

4.3. INFORMAL PROTOCOL DESCRIPTION 77

4.2.5 Receipt-Freeness

The property of receipt-freeness is not adequately captured by a standard proof in the UC model. To deal
with receipt-freeness, we have to consider an adversary that can coerce parties in addition to corrupting them.
A coercion attack models the real-life scenario in which voters are bribed or threatened to act according
the adversaries wishes. The adversary can interrogate coerced parties and give them commands, but does
not completely control them (a formal definition of receipt freeness can be found in Section 4.5). When
considering the receipt-freeness of our protocol, we do not allow the adversary to coerce or corrupt the DRE.
The latter is because corrupting the DRE reveals the voter’s inputs, and so the protocol is trivially coercible.
The former is because the DRE is a machine, so it does not make sense to bribe or threaten it.

It may make sense to coerce or corrupt the DRE’s programmers, however. The difference between this
situation and a corrupt DRE is that a corrupt DRE can communicate freely with the adversary, while a
“maliciously programmed” DRE can communicate with the adversary only through the public communica-
tion channel (in one direction) and the voter’s input (in the other direction). We briefly discuss this problem
in Section 4.8.

4.2.6 Timing Attacks

Like any cryptographic proof, the security of our protocol is guaranteed only as far as the real-world matches
the model on which our proof is based. One point we think is important to mention is the “timing” side-
channel. Our model does not specify timing information for messages appearing on the bulletin board — only
the order of the messages. However, in a real life implementation it may be possible to time the messages
sent by the DRE. If the DRE actually does send messages simultaneously to the bulletin board and the
voter, this timing information can be used to determine the voter’s input (since the time it takes the voter to
respond will be different). To prevent this attack, we specify that the DRE sends its output to the bulletin
board only after the voter leaves the booth. One possible implementation (that also guarantees that the
DRE can’t leak information using timing, is that the DRE is not connected to a network at all. Instead, it
prints the output to be sent to the bulletin board. The printout is given by the voter to the election officials
on exiting the booth, who can scan it and upload the information to the bulletin board.

4.3 Informal Protocol Description

4.3.1 Overview

At the highest level, our voting scheme is extremely simple: the voter enters the voting booth and selects
a candidate. The DRE uses a statistically-hiding commitment scheme to publicly commit to the candidate
(e.g., by posting the commitment on a public bulletin board). It then proves privately to the voter that the
commitment is really to the voter’s candidate. After all voters have cast their ballots, the DRE publishes
the final tally. It then proves, using a zero knowledge proof of knowledge, that the tally corresponds to the
commitments published for each voter.

Since we know how to construct a ZK proof of knowledge for any NP language, and in particular we
can construct such a proof system for any string commitment scheme, it would appear that we could use
any such system for the private proof (the one that convices the voter that her ballot is being cast as she
intended). The zero-knowledge property would ensure that the voter cannot use the proof to convince any
third party of her vote.

The problem is that the voter is human, and the general zero-knowledge proof systems require complex
computations that are infeasible to perform without the help of computers. Since the scheme must remain
secure even if the DRE is malicious, the voter cannot trust the DRE to make these calculations. Allowing
voters to use their own computers is not much better. Most voters do not know how to verify that their
computer is actually running the correct code. Even worse, a coercive adversary could require a voter to use
a computer supplied by the adversary, in which case it could easily learn the identity of the voter’s candidate.

Our solution is that used in Neff’s voting scheme: Neff observed that a standard cut-and-choose zero
knowledge proof of some statement S has the following structure: the prover commits to two proofs P0, P1,

78 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Figure 4.3.1: Ballot for Betty

the verifier makes a choice b, the prover reveals proof Pb and finally the verifier makes sure the revealed proof
is correct. The protocol is constructed so that if both P0 and P1 are valid proofs, the statement S holds
but, given b, anyone can construct a pair P ′0, P

′
1 so that P ′b is correct (even if S does not hold). The insight

is that a human can easily make the choice b without the aid of a computer. To keep the proof private,
the DRE constructs a dummy proof for all the other candidates by running the ZK simulator. The only
difference between the real and dummy proofs in this case is that in the real proof the DRE first commits,
and then the voter chooses b, while in the dummy proof the voter reveals b before the DRE commits. This
temporal information cannot be inferred from the receipt. However, since the receipt is public, anyone can
check (using a computer) that both Pb and P ′b are valid proofs. Even if the voter does not trust her own
computer, it is enough that someone with a good implementation of the verification algorithm perform the
check.

In the following subsections we present a concrete implementation of our generic protocol. This imple-
mentation is based on Pedersen commitments. In Section 4.3.2 we describe an example of a hypothetical
voter’s interaction with the system. Section 4.3.3 goes behind the scenes, and describes what is actually
occurring during this session (as well as giving a brief description of the protocol itself).

4.3.2 A Voter’s Perspective

Figure 4.3.1 shows what Dharma, our hypothetical voter, would see while casting her ballot in an election
between candidates Alice, Betty and Charlie.

Dharma identifies herself to the election official at the entrance to the polling station and enters the
booth. Inside the booth is the DRE: a computer with a screen, keyboard and an ATM-style printer

1. The screen presents the choice of candidates: “Press A for Alice, B for Betty and C for Charlie”.
Dharma thinks Betty is the best woman for the job, and presses B.

2. The DRE now tells Dharma to enter some random words next to each of the other candidates (Alice

4.3. INFORMAL PROTOCOL DESCRIPTION 79

and Charlie). For an even simpler experience, the DRE can prefill the random words, and just give
Dharma the option of changing them if she wants. At any time until the final stage, Dharma can
change her mind by pressing ESC. In that case, the DRE spits out whatever has been printed so far
(this can be discarded), and returns to stage 1.

3. The DRE prints two rows. The actual printed information is hidden behind a shield, but Dharma can
verify that the two rows were actually printed.

4. Dharma enters a random challenge for her chosen candidate.

5. The DRE prints out the rest of the receipt. Dharma verifies that the challenges printed on the receipt
are identical to the challenges she chose. If everything is in order, she presses OK to finalize her choice.
If something is wrong, or if she changed her mind and wishes to vote for a different candidate, she
presses ESC and the DRE returns to stage 1.

6. The DRE prints a “Receipt Certified” message on the final line of the receipt. Dharma takes her
receipt and leaves the voting booth. At home, she verifies that the public bulletin board has an exact
copy of her receipt, including the two lines of “gibberish” (the bulletin board can be viewed from the
internet). Alternatively, she can give her receipt to an organization she trusts (e.g., “Betty’s Popular
People’s Front”), who will perform this verification for her.

After all the voters have cast their ballots, the protocol moves to the Final Tally phase. Voters are
not required to participate in this phase — it consists of a broadcast from the DRE to the public bulletin
board (here we assume we are using a random beacon or the Fiat-Shamir heuristic to make the final tally
non-interactive). Note that when the Fiat-Shamir heuristic is used, we do not actually require the DRE to
be connected to a network. The DRE can store its output (e.g., on a removable cartridge). After the DRE
has written the final tally message, the contents of the cartridge can be uploaded to the internet. Anyone
tampering with the cartridge would be detected.

Anyone interested in verifying the election results participates in the Universal Verification phase. This
can include voters, candidates and third parties. Voters do not have to participate, as long as they made sure
that a copy of their receipt appears on the bulletin board, and they trust that at least one of the verifying
parties is honest.

Receipt-Freeness To get an intuitive understanding for why this protocol is receipt-free, suppose Eve
tries to bribe Dharma to vote for Alice instead. There are only two things Dharma does differently for Alice
and Betty: she presses B in the first step, and she fills in Alice’s random words before the DRE prints
the first two lines of the receipt, while filling in Betty’s afterwards. Eve has no indication of what Dharma
pressed (since the receipt looks the same either way). The receipt also gives no indication in what order
the candidate’s words were filled (since the candidates always appear in alphabetical order). Because the
first two lines of the receipt are hidden behind the shield when Dharma enters the challenge for her chosen
candidate, she doesn’t gain any additional information as a result of filling out the challenges for Alice and
Charlie; so whatever Eve asks her to do, she can always pretend she filled out the challenge for Alice after
the challenge for Betty.

4.3.3 Behind the Scenes: An Efficient Protocol Based on the Discrete Log
Assumption

Pedersen Commitments The concrete protocol we describe in this section is based on Pedersen com-
mitments [64]; statistically hiding commitments whose security is based on the hardness of discrete-log. We
briefly describe the Pedersen commitment, assuming discrete log is hard in some cyclic group G of order
q, and h, g ∈ G are generators such that the committer does not know logg h. To commit to a ∈ Zq, the
committer chooses a random element r ∈ Zq, and sends hagr. Note that if the committer can find a′ 6= a

and r′ such that ha
′
gr
′

= hagr, then ha
′−a = gr−r

′
, and so the committer can compute logg h = r−r′

a′−a (in
contradiction to the assumption that discrete log is hard in G). Therefore the commitment is computation-
ally binding. If r is chosen uniformly at random from Zq, then gr is a uniformly random element of G (since

80 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

g is a generator), and so for any a the commitment hagr is also a uniformly random element of G. So the
commitment is perfectly hiding.

We’ll now show what happened behind the scenes, assuming the parameters G, h and g of the Pedersen
commitment scheme are decided in advance and known to all parties. For simplicity, we also assume a
collision-resistant hash function H : {0, 1}∗ 7→ Zq. This allows us to commit to an arbitrary string a ∈ {0, 1}∗
by committing to H(a) instead (we need this because we require the DRE to commit to some strings that
are too long to map trivially into Zq). Denote P (a, r) = hH(a)gr. To open P (a, r), the committer simply
sends a, r.

The security of the scheme depends on a security parameter, k. The probability that the DRE can change
a vote without being detected is 2−k+1 + O(nkε), where n is the number of voters and ε is the probability
of successfully breaking the commitment scheme. We will require the DRE to perform a total of O(mnk)
commitments (where m is the number of candidates, and n the number of voters).

Casting the Ballot. We’ll go over the stages as described above.

1. (Dharma chose Betty). The DRE computes a commitment: v = P (Betty, r) (where r is chosen
randomly), and prepares the first step in a proof that this commitment is really a commitment to Betty.
This step consists of computing, for 1 ≤ i ≤ k, a “masked” copy of v: bi = vgrB,i = P (Betty, r+ rB,i),
where rB,i is chosen randomly.

2. (Dharma enters dummy challenges). The DRE translates each challenge to a k bit string using a
predetermined algorithm (e.g., by hashing). Let Ai be the ith bit of the challenge for Alice. For each
bit i such that Ai = 0 the DRE computes a commitment to Alice: ai = P (Alice, r + rA,i), while
for each bit such that Ai = 1 the DRE computes a masked copy of the real commitment to Betty :
ai = vgrA,i . Note that in this case, ai = P (Betty, r + rA,i). The set of commitments a1, . . . , ak will
form a dummy proof that v is a commitment to Alice (we’ll see why we construct them in this way
in the description of universal verification phase step 4.3.3). The DRE also computes c1, . . . , ck in the
same way for Charlie.

The DRE now computes a commitment to everything it has calculated so far:

x = P ([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx).

It prints x on the receipt (this is what is printed in the first two lines).

3. (Dharma enters the real challenge) The DRE translates this challenge into a k bit string as in the
previous step. Denote Bi the ith bit of the real challenge.

4. (The DRE prints out the rest of the receipt). The DRE now computes the answers to the challenges:
For every challenge bit i such that is Xi = 0 (where X ∈ {A,B,C}), the answer to the challenge is
sX,i = r+ rX,i. For Xi = 1, the answer is sX,i = rX,i. The DRE stores the answers. It then prints the
candidates and their corresponding challenges (in alphabetical order), and the voter’s name (Dharma).

5. (Dharma accepts the receipt). The DRE prints a “Receipt Certified” message on the final line of
the receipt. (the purpose of this message is to prevent voters from changing their minds at the last
moment, taking the partial receipt and then claiming the DRE cheated because their receipt does
not appear on the bulletin board). It then sends a copy of the receipt to the public bulletin board,
along with the answers to the challenges and the information needed to open the commitment x:
(sA,1, . . . , sA,k, sB,1, . . . , sB,k, sC,1, . . . , sC,k) and ([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx).

Final Tally. The DRE begins the tally phase by announcing the final tally: how many voters voted for
Alice, Betty and Charlie. Denote the total number of voters by n, and vi = P (Xi, ri) the commitment to
voter i’s choice (Xi) that was sent in the Ballot Phase. The DRE now performs the following proof k times:

1. The DRE chooses a random permutation π of the voters, and n “masking numbers” m1, . . . ,mn. It
then sends the permuted, masked commitments of the voters:
vπ(1)g

mπ(1) , . . . , vπ(n)g
mπ(n)

4.3. INFORMAL PROTOCOL DESCRIPTION 81

2. The random beacon sends a challenge bit b

3. If b = 0, the DRE sends π and m1, . . . ,mn (unmasking the commitments to prove it was really
using the same commitments it output in the Ballot-Casting phase). If b = 1, the DRE opens the
masked commitments (without revealing π, the correspondence to the original commitments). It
sends: (Xπ(1), rπ(1) +mπ(1)), . . . , (Xπ(n), rπ(n) +mπ(n))

Universal Verification (and security proof intuition). The purpose of the universal verification stage
is to make sure that the DRE sent well-formed messages and correctly opened all the commitments. For the
messages from the Ballot-Casting phase, the verifiers check that:

1. x = P ([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx) This ensures that the DRE committed to v and b1, . . . , bk
(in Dharma’s case) before Dharma sent the challenges B1, . . . , Bk (because x was printed on the receipt
before Dharma sent the challenges).

2. For every commitment xi (where x ∈ {a, b, c}), its corresponding challenge Xi, and the response sX,i,
the verifiers check that xi is a good commitment to X when Xi = 0 (i.e., xi = P (X, sXi)) and that
xi is a masked version of v if Xi = 1 (i.e., vsXi = xi). Note that if xi is both a masked version of v
and a good commitment to X, then v must be a good commitment to X (otherwise the DRE could
open v to two different values, contradicting the binding property of the commitment). This means
that if v is a commitment to some value other than the voter’s choice, the DRE will be caught with
probability at least 1− 2−k: every commitment xi can be either a good masked version of v or a good
commitment to X, but not both. So for each of the k challenges (which are not known in advance to
the DRE), with probability 1

2 . The DRE will not be able to give a valid response.

For the final tally phase, the verifiers also check that all commitments were opened correctly (and ac-
cording to the challenge bit). As in the Ballot-Casting phase, if the DRE can correctly answer a challenge
in both directions (i.e., the commitments are a permutation of good masked versions of commitments to the
voter’s choices, and also when opened they match the tally), then the tally must be correct. So the DRE
has probability at least 1

2 of getting caught for each challenge if it gave the incorrect tally. If the DRE wants
to change the election results, it must either change the final tally, change at least one of the voter’s choices
or break the commitment scheme. Since the protocol uses O(nk) commitments (note that cheating on the
commitments in the dummy proofs doesn’t matter), the total probability that it can cheat is bounded by
2 · 2−k +O(nkε).

Protocol Complexity. We can consider both the time and communication complexity of the protocol. In
terms of time complexity, the DRE must perform O(knm) commitments in the Ballot Casting phase (where
m is the number of candidates), and O(kn) commitments in the Final Tally phase (the constants hidden in
the O notation are not large in either case). Verifiers have approximately the same time complexity (they
verify that all the commitments were opened).

The total communication complexity is also of the same order. In this case, the important thing is to
minimize the DRE’s communication to the voter (since this must fit on a printed receipt). Here the situation
is much better: the receipt only needs to contain a single commitment and the challenges sent by the voter
(each challenge has k bits). Note that we do not use any special properties of the commitment on the receipt
(in practice, this can be the output of a secure hash function rather than a Pedersen commitment).

4.3.4 Using Generic Commitment

The protocol we described above makes use of a special property of Pedersen commitment: the fact that we
can make a “masked” copy of a commitment. The essence of our zero knowledge proof is that on the one
hand, we can prove that a commitment is a masked copy of another without opening the commitment. On
the other hand, just by seeing two commitments there is no way to tell that they are copies, so opening one
does not give us information about the other.

82 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Our generic protocol uses the same idea, except that we implement “masked copies” using an arbitrary
commitment scheme. The trick is to use a nested commitment (commitments to commitments). We create
all the “copies” in advance (we can do this since we know how many copies we’re going to need); a “copyable”
commitment to a, assuming we’re going to need k copies, consists of k commitments to commitments to a.

Denote C(a, r) a commitment to a with randomness r. Then the copyable commitment consists of
v = C(C(a, r1), s1), . . . , C(C(a, rk), sk). The ith copy of the commitment is C(a, ri). The hiding property
of C ensures that there is no way to connect C(a, ri) to v. On the other hand, the binding property of C
ensures that we cannot find any s′ such that C(C(a, ri), s′) is in v unless this was the original commitment.
A formal specification for constructing copyable commitment from “standard” UC commitment appears in
Section 4.7 (the protocol described there is slightly more complex, but the intuition remains the same).

Unlike the case with Pedersen commitments, when using the nested commitment trick an adversary can
“copy” a commitment to a different value (the adversary can always use different values in the inner commit-
ments). The insight here is that the adversary still has to commit in advance to the locations of the errors. Af-
ter the DRE commits, we randomly permute the indices (so v = C(C(a, rσ(1)), sσ(1)), . . . , C(C(a, rσ(k)), sσ(k)),
for some random permutation σ). If the DRE did commit to the same value at every index, this permutation
will not matter. If the DRE committed to different values, we show that it will be caught with high proba-
bility. Intuitively, we can consider each commitment in the tally phase as a row of a matrix whose columns
correspond to the voters. By permuting the indices of the copies, we are effectively permuting the columns
of the matrix (since in the ith tally step we force the DRE to use the ith copy. The DRE can pass the test
only if all the rows in this matrix have the same tally. But when the columns are not constant, this occurs
with small probability. A formal specification of the general protocol appears in Section 4.4. To simplify the
proof, the technique we use in practice is slightly different than the one described above, however the idea
is the same.

4.4 Abstract Protocol Construction

This section contains a description of the protocol using abstract “ideal functionalities”. The abstract
specification can be thought of as a high-level view of the protocol construction as well as a formal description.
We prove that this construction is secure, and in the following sections give explicit protocols that implement
the ideal functionalities.

Our specific protocol constructions explicitly take into account which parts of the protocol can be per-
formed by unaided humans and which require computers. In this high-level description, however, these
details are ignored. To prove that the protocol is secure even in the presence of untrusted computers, we
first prove it is secure given some basic “ideal” building blocks, and later show that these building blocks
can be securely realized by humans.

4.4.1 Building Blocks

The abstract protocol uses a functionality we call “Commit-with-Copy” and denote F (C&C). The F (C&C)

functionality models a string commitment with one committer a verifier and an additional extra property:
The committer has the ability to “copy” a commitment, creating a commitment to the same value as the
original. The two commitments are “linked”, so that the committer can prove that the new commitment is
a copy of the old without revealing its value.

Any commitment scheme which allows a committer to prove equivalence between commitments has this
property: the copy is simply a new commitment to the same value, and proving it is a copy consists of
proving the equivalence of the commitments.

For our voting protocol, a weaker version of this functionality suffices: we distinguish between “source”
commitments and linked copies (each linked copy has a corresponding source commitment), and fix in
advance the number of copies we allow the committer to make. We also allow the commiter to create “fake”,
unlinked copies of a source commitment; these may not be commitments to the same value as the source
commitment, but the committer can only prove a “real” copy is linked to its source. We limit the number
of fake commitments as well.

4.4. ABSTRACT PROTOCOL CONSTRUCTION 83

We can tolerate a corrupt committer that makes faulty (linked) copies, as long as the committer decides
in advance (at the time of committing) which of the copies will be bad and to what value they can be opened
(i.e., a faulty copy is one for which the corrupt committer can “prove” it is a copy, but can open to a value
different from the original). We will denote an instance of F (C&C) that is limited to k linked copies (some
of which may be faulty) by F (C&C[k]). We show how to implement F (C&C[k]) in a universally composable
manner based on any UC commitment scheme in Section 4.7.

Formally, functionality F (C&C[k]) allows three forms of commitments: source commitments, linked copies
of a source commitment and fake copies of a source commitment. To keep track of existing commitments,
F (C&C[k]) maintains two internal databases: one for source commitments and one for copies (both linked
and fake). The source commitment database contains tuples of the form (r, s, F), where r is a unique tag
(arbitrary string) identifying the commitment, s the committed string, F = (s′1, . . . , s

′
|F |) a vector of potential

“fake” copy values (the honest committer is limited to one fake commitment for each value in F , albeit in
an arbitrary order). The “copy” database contains tuples of the form (r, s, o, i), where r is a unique tag for
the copy, s is the value to which it can be openend, o is the corresponding source commitment, and i is the
copy index (i ∈ {1, . . . , k} for linked copies, and i =⊥ for fake copies). We use the shorthand notation “r
appears in the source database” to say that there exist s and F such that the tuple (r, s, F) appears in the
source commitment database. and “r appears in the copy database” to say that there exist s, o and i such
that (r, s, o, i) appears in the copy commitment database. In our constructions, the commitment tags are
unique, and we can denote sr and Fr (or sr, or and ir) the corresponding elements of the tuple whose first
element is r. In the following description, we assume there is a single committer (our protocol only requires
the DRE to commit). The functionality accepts commands only from the committer. Output is sent to all
parties (as well as the adversary). The commands accepted by the functionality are the following:

SrcCommit r, s, F This command models a source commitment (that can be copied but not opened). r
is the unique tag identifying this commitment, s is the commitment value, and F is the vector of
possible values for “fake” (unlinked) commitments. On receiving this command, the functionality
verifies that r does not appear in the source database, stores (r, s, F) in the database and outputs
(SrcCommitted, r, |F |).

BadCommit r,Q, ` This command can only be sent by a corrupt committer. From the receiver’s point of
view, it is identical to the standard SrcCommit command. r is the unique identifying tag for the
commitment. Q

.= (s(1), . . . , s(k)) is a vector of committed values; the ith copy of the commitment
will be opened to s(i). ` is a bound on the total number of copies (both linked and fake). Note that
unlike the honest committer, the corrupt committer can create linked commitments to any value and
is not required to commit in advance to the fake commitment values. On receiving this command, the
functionality verifies that r does not appear in the source database and that k ≤ |Q| ≤ ` and stores
(r,⊥,⊥) in the database. For each i ∈ |Q| it stores (⊥, s(i), r, i) in the copy database. It then outputs
(SrcCommitted, r, `− k).

LinkedCopy r, r′, i On receiving this command, the functionality verifies that r appears in the source
database and that r′ does not appear in the copy database. If the committer is corrupt and a Bad-
Commit r,Q, ` command was previously sent, the functionality verifies that there is an entry of the
form (⊥, s′(i), r, i) in the copy database and replaces it with (r′, s′(i), r, i). Otherwise, the functionality
verifies that 1 ≤ i ≤ k and that there is no entry of the form (∗, ∗, r, i) in the copy database (where ∗
matches anything but ⊥) and stores (r′, sr, r, i) in that database. It then outputs (Committed, r, r′)

FakeCopy r, r′, s This command models an unlinked commitment. To the receiver, it is indistinguishable
from a linked copy of the same source, and functions as a standard commitment with regards to
opening. Unlike a linked copy, the committer cannot use the ProveCopy command to prove a fake
copy is linked to the source commitment. On receiving this command, the functionality verifies that
r appears in the source database and that r′ does not appear in the copy database. If the committer
is honest, it also verifies that s ∈ Fr and that the number of commands of the form FakeCopy r, ∗, s
that were previously received is less than the number of occurrences of s in Fr. If these conditions are
all met, the functionality stores (r′, s, r,⊥) and outputs (Committed, r, r′) (note that this output is
identical to the output when the committer sends a LinkedCopy command).

84 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Open r On receiving this command, the functionality verifies that r is in the copy database. If so, it outputs
(Opened, r, sr).

ProveCopy r On receiving this command, the functionality verifies that r appears in the copy database
and that ir 6=⊥ (i.e., r is not a fake copy). It then outputs (CopyOf, r, or, ir). Note that this output
also reveals the index of the copy.

4.4.2 Protocol Description

Protocol 4.1a Ballot casting by voter v (Voter)
Input: Chosen candidate xv, security parameter k

1: Send xv to DRE
2: Wait to receive (SrcCommitted, v) from F (C&C)

3: Choose a random subset Rv ⊂ [(m+ 2)k] of size |R| = 2k.
4: Send Rv to DRE
5: for 1 ≤ c ≤ m do {Loop over all candidates}
6: if c = xv then {Generate “real” proof commitments}
7: Wait to receive (Committed, v, v(c)

i) from F (C&C) for all 1 ≤ i ≤ k
8: Choose “real” challenge bits: r(c)

v
.= r

(c,1)
v , . . . , r

(c,k)
v ∈R {0, 1}

9: Send r
(c)
v to DRE

10: else {c 6= xv; Generate “dummy” proof commitments}
11: Choose “dummy” challenge bits: r(c)

v
.= r

(c,1)
v , . . . , r

(c,k)
v ∈R {0, 1}

12: Send r
(c)
v to DRE

13: Wait to receive (Committed, v, v(c)
i) from F (C&C) for all 1 ≤ i ≤ k

14: end if
15: end for
16: Broadcast Rv and r

(1)
v , . . . , r

(m)
v .

Ballot Casting. This part of the protocol is performed for each voter. The ballot casting takes place inside
the voting booth, where we assume the voter has an untappable private channel to the DRE. However, while
inside the voting booth the voter does not have access to trusted computers (we only require the voter to
choose random strings and perform string comparison operations).

The DRE has a public, authenticated broadcast channel. In practice, this would be implemented by a
public bulletin board (which can be read by anyone). Since the voter cannot access the bulletin board while
inside the voting booth, in practice the DRE will communicate with the voter by printing any messages
it sends to the bulletin board (in order to prevent timing attacks, the DRE will send the messages to the
bulletin board only at the end of the voting session). On leaving the voting booth, the voter will verify
that the messages appearing on the bulletin board match the printed receipt. The DRE also has access to
an instance of F (C&C[(m+2)k]) (we will write simply F (C&C)), where k is a security parameter and m is the
number of candidates. The same instance of F (C&C) is used for all voters, and the committer is the DRE
in all cases. Outputs of F (C&C) meant for the receiver also go to the broadcast channel. Since F (C&C) is
deterministic, we can assume the DRE has a copy of its internal database.

The ballot casting protocol for voter v with input xv (i.e., voting for candidate xv) appears in two parts:
Protocol 4.1a (from the voter’s point of view) and Protocol 4.1b (from the DRE’s point of view).

Note that the difference between the dummy and real proofs, in terms of the voter’s actions, is only in the
order of the events: in the real proof, the DRE commits first, and then the voter sends a random challenge,
while in the dummy proof the voter sends the random challenge first, and only after that the DRE chooses
its commitment.

Final Tally. Informally, the final tally protocol is very similar to the standard ZK proof that the com-
mitments appearing on the bulletin board (those made in the Ballot Casting phase) are consistent with the

4.4. ABSTRACT PROTOCOL CONSTRUCTION 85

Protocol 4.1b Ballot casting by voter v (DRE)
Input: Security parameter k

1: Wait to receive xv from voter v
2: Let F .= (s′1,1, . . . , s

′
1,k, . . . , s

′
m,1, . . . , s

′
m,k), where s′i,j

.= i.
3: Send SrcCommit v, xv, F to F (C&C)

4: Wait to receive subset Rv ⊂ [(m + 2)k] from voter. Denote R̄v
.= [(m + 2)k] \ Rv. Consider the set R̄v

as a m× k matrix of indices: R̄v
.=
{
R̄

(1,1)
v , . . . , R̄

(1,1)
v

}
5: for 1 ≤ c ≤ m do {Loop over all candidates}
6: if c = xv then {Generate “real” proof commitments}
7: Send LinkedCopy v, v

(c)
i , R̄

(c,i)
v to F (C&C) for all 1 ≤ i ≤ k

8: Wait to receive “real” challenge bits: r(c)
v

.= r
(c,1)
v , . . . , r

(c,k)
v

9: else {c 6= xv; Generate “dummy” proof commitments}
10: Wait to receive “dummy” challenge bits: r(c)

v
.= r

(c,1)
v , . . . , r

(c,k)
v

11: for 1 ≤ i ≤ k do
12: if r(c,i)

v = 0 then
13: Send FakeCopy v

(c)
i , c to F (C&C)

14: else
15: Send LinkedCopy v, v

(c)
i , R̄

(c,i)
v to F (C&C)

16: end if
17: end for
18: end if
19: for 1 ≤ i ≤ k do {Open proof commitments}
20: if r(c,i)

v = 0 then
21: Send Open v

(c)
i to F (C&C)

22: else
23: Send ProveCopy v

(c)
i to F (C&C)

24: end if
25: end for
26: end for

tally announced by the DRE. If the Commit-and-Copy functionality only allows perfect copies, repeating
the following interactive protocol would work:

1. The DRE sends a random permutation of copies of the commitments

2. The verifier decides whether the DRE should:

(a) Open the copies, proving that they match the announced tally

(b) Disclose the random permutation, and prove that the commitments made by the DRE are actually
copies of the original commitments.

Clearly, if the DRE can do both at the same time, the tally must be correct.

An alternative description of this simple protocol is that the DRE sends a matrix of commitment copies, each
row containing a random permutation of the commitment copies. The verifier then chooses, independently,
a challenge bit for each row. Here, the ith row of the matrix contains the ith copy of each commitment.

When the Commit-and-Copy functionality allows the adversary to make some bad copies, the simple
protocol is no longer secure. Our modification is to add an additional “challenge” stage: after the DRE
commits (also committing to the bad copies), the challenge consists of a random pairing of the copies; each
of the first k copies is paired to a random copy from the second k copies. Each element in the matrix will
now consist of a pair of commitments. The DRE then randomly permutes the rows as in the simple protocol.
The verifier also makes an additional check: that the two copies of each pair are commitments to the same

86 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

candidate. For the DRE to alter the tally results (using the bad copies), it must have at least one bad copy
in each row (if a row consists entirely of good copies, the tally for that row matches the voters’ intent). Since
the bad copies are fixed before the pairs are chosen, the probability that each pair contains exactly two bad
copies or two good copies is exponentially small in the number of rows when there is a constant fraction of
bad copies (thus, so is the probability that the DRE can successfully pass the verification).

Protocol 4.2 Final Tally (DRE)
1: Choose random permutations π0, . . . , πk, πi : [n] 7→ [n].
2: Publish cπ0(1), . . . , cπ0(n) {A random shuffle of the votes}
3: Wait to receive permutations σ1, . . . , σn from random beacon (σi : [k] 7→ [k])
4: for 1 ≤ i ≤ k do
5: for 1 ≤ v ≤ n do
6: Send Copy πi(v), v, i , σπi(v)(R

(i)
πi(v)) to F (C&C)

7: Send Copy πi(v), v, k + i , R
(k+i)
πi(v) to F (C&C)

8: end for
9: end for

10: Wait to receive challenge bits b1, . . . , bk from random beacon
11: for 1 ≤ i ≤ k do
12: if bi = 0 then
13: Send ProveCopy v, i and ProveCopy v, k + i for all 1 ≤ v ≤ n {This reveals πi}
14: else {bi = 1}
15: Send Open v, i and Open v, k + i for all 1 ≤ v ≤ n {This reveals a shuffle of the votes (by πi)}
16: end if
17: end for

A formal description appears as Protocol 4.2. To help clarify the notation, we give a more intuitive
explanation below. Denote xv the candidate chosen by voter v. Recall that we had 2k copies of v “left over”
from the Ballot Casting phase. The indices of these copies are the set Rv

.=
{
R

(1)
v , . . . , R

(2k)
v

}
. To reduce

clutter, in the description below when we talk about the ith copy of the commitment to xv, we actually
mean the ith unused copy, whose index is R(i)

v . Denote M the 2k × n matrix such that Mi,v is the ith copy
of the commitment to xv. We can think of the commitment copies produced in steps 4 to 9 of Protocol 4.2
as a matrix M ′′, that is produced by permuting the columns and then the rows of M (Figure 4.4.2 depicts
an example of the operations for 5 voters and k = 2):

1. First a matrix M ′ is constructed from M by independently permuting each column of M using the
permutations σ1, . . . , σn (sent by the random beacon). The first k elements of column i are permuted
using σi, while the last k elements remain in their original positions. (we will consider the elements
M ′i,v

.= Mσv(i),v to be paired with the element M ′k+i,v
.= Mk+i,v).

2. Next, M ′′ is constructed from M ′ by independently permuting each row of the M ′ using the permu-
tations π1, . . . , πk (chosen by the DRE): in the first k rows, row i is permuted using πi. In the last k
rows, row k + i is again permuted using πi.

Note that the DRE is not required to perform exactly these steps; they are simply a way to describe the
final result. The commitment copy whose tag is v, i corresponds to the element M ′′i,v

.= M ′i,πi(v).

Universal Verification.

1. (Verify the Ballot Casting) The verifiers check, for every voter, that the responses sent by the DRE
to the challenges are correct (i.e., for every i ∈ [k], v ∈ [n] and c ∈ [m], if r(c,i)

v = 0 then an
(Opened, v(c)

i , c) message was received from F (C&C) and if r(c,i)
v = 1 a message (CopyOf, v(c)

i , v, R̄
(c,i)
v)

was received from F (C&C)).

4.5. INCOERCIBILITY AND RECEIPT-FREENESS 87

Figure 4.4.1: Example of Final Tally Matrix (for n = 5 voters and k = 2)

2. (Verify the Final Tally) The verifiers check that for every i such that bi = 0 and every voter v, the re-
sponses (CopyOf, v, i , πi(v), σπi(v)(R

(i)
πi(v))) and (CopyOf, v, k + i , πi(v), R(k+i)

πi(v)) were received from

F (C&C). The verifiers check that for every i such that bi = 1 the responses (Opened, v, i , x) and

(Opened, v, k + i , y) were received from F (C&C), that x = y and that the tally matches the tally
announced in step 2 of Protocol 4.2.

If any of the verification steps fail, the verifier outputs ⊥ and aborts. Otherwise, the verifier outputs the
tally.

4.4.3 Protocol Security

We prove the protocol’s accuracy and privacy guarantees in the UC framework. Formally. the following
theorem is proven in Section 4.6:

Theorem 4.1. The abstract protocol, using F (C&C[(m+2)k]), UC-realizes F (V).

The protocol is receipt-free under the definition detailed in Section 4.5. We formally prove the following
theorem in Section 4.5.4:

Theorem 4.2. The abstract protocol, using F (C&C[(m+2)k]), is receipt-free.

4.5 Incoercibility and Receipt-Freeness

Standard “secure computation” models usually deal with two types of parties: honest parties with a secret
input that follow the protocol, and corrupt parties that are completely controlled by the adversary. In voting
protocols, we often need to consider a third type of player: a party that has a secret input, but is threatened
(or bribed) by the adversary to behave in a different manner. Such a “coerced” player differs from a corrupt
party in that she doesn’t do what the adversary wishes if she can help it; if she can convince the adversary
that she’s following its instructions while actually following the protocol using her secret input, she will.

88 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Benaloh and Tuinstra [7] were the first to introduce this concept. Most papers concerning receipt-free
voting (including Benaloh and Tuinstra), do not give a rigorous definition of what it means for a protocol
to be receipt-free, only the intuitive one: “the voter should not be able to convince anyone else of her vote”.

Canetti and Gennaro considered this problem for general multiparty computation (of which voting is
a special case), and gave a formal definition of incoercibility [17]. Their definition is weaker than receipt-
freeness, however: the adversary is only allowed to coerce a player after the protocol is complete (i.e., it
cannot require a coerced player to follow an arbitrary strategy, or even specify what randomness to use). To
reduce confusion, we refer to the property defined in [17] as post-factum incoercibility.

Juels, Catalano and Jakobsson also give a formal definition of coercion-resistance [47]. Their definition
has a similar flavor, but is specifically tailored to voting in a public-key setting. It is stronger than receipt-
freeness in that a coercion-resistant protocol must also prevent an abstention-attack (preventing a coerced
voter from voting). However, this strong definition requires anonymous channels from voters to tallying
authorities, otherwise an abstention-attack is always possible (this is because a coercer that can monitor
non-anonymous communication to the tallying authorities can make sure voters do not communicate at all
with the authorities, thus forcing them to abstain).

Our formalization of receipt-freeness is a generalization of Canetti and Gennaro’s definition (and so can
be used for any secure function evaluation), and is strictly stronger (i.e., any protocol that is receipt-free
under our definition is post factum incoercible as well). The difference is the adversarial model we consider.
Canetti and Gennaro only allow the adversary to query coerced players players after the protocol execution
is complete. Each player has a fake input in addition to the real one (the one actually used in the protocol).
When coerced by the adversary, the parties respond to queries by faking their view of the protocol, so that
it will appear to the adversary that they used their fake input instead of their real one.

In our definition, players also have fake inputs in addition to the real ones. In contrast to the post factum
incoercible model, the adversary can coerce players at any time during the protocol execution. A coerced
player will use the fake input to answer the adversary’s queries about the past view (before it was coerced).
The adversary is not limited to passive queries, however. Once a player is coerced, the adversary can give it
an arbitrary strategy (i.e. commands the player should follow instead of the real protocol interactions). We
call coerced players that actually follow the adversary’s commands “puppets”.

A receipt-free protocol, in addition to specifiying what players should do if they are honest, must also
specify what players should do if they are coerced; we call this a “coercion-resistance strategy” The coercion-
resistance strategy is a generalization of the “faking algorithm” in Canetti and Gennaro’s definition —
the faking algorithm only supplies an answer to a single query (“what was the randomness used for the
protocol”), while the coercion-resistance strategy must tell the party how to react to any command given by
the adversary.

Intuitively, a protocol is receipt-free if no adversary can distinguish between a party with real input x
that is a puppet and one that has a fake input x (but possibly a different real input) and is running the
coercion-resistance strategy. At the same time, the computation’s output should not change when we replace
coerced parties running the coercion-resistance strategy with parties running the honest protocol (with their
real inputs). Note that these conditions must hold even when the coercion-resistance strategy is known to
the adversary.

Unfortunately, this “perfect” receipt-freeness is impossible to achieve except for trivial computations.
This is because for any non-constant function, there must exist some party Pi and some set of inputs to the
other parties such that the output of the function depends on the input used by xi. If the adversary corrupts
all parties except for Pi, it will be able to tell from the output of the function what input what used by Pi,
and therefore whether or not Pi was a puppet.

This is the same problem faced by Canetti and Genaro in defining post factum incoercibility. Like
theirs, our definition sidesteps the problem by requiring that any “coercion” the adversary can do in the real
world it can also do in an ideal world (where the parties only interaction is sending their input to an ideal
functionality that computes the function). Thus, before we give the formal definition of receipt-freeness, we
must first describe the mechanics of computation in the ideal and real worlds. Below, f denotes the function
to be computed.

4.5. INCOERCIBILITY AND RECEIPT-FREENESS 89

4.5.1 The Ideal World

The ideal setting is an extension of the model used by Canetti and Genaro (the post factum incoercibility
model). As in their model, there are n parties, P1, . . . , Pn, with inputs x1, . . . , xn. Each party also has a
“fake” input; they are denoted x′1, . . . , x

′
n. The “ideal” adversary is denoted I.

In our model we add an additional input bit to each party, c1, . . . , cn. We call these bits the “coercion-
response bits”. A trusted party collects the inputs from all the players, computes f(x1, . . . , xn) and broad-
casts the result. In this setting, the ideal adversary I is limited to the following options:

1. Corrupt a subset of the parties. In this case the adversary learns the parties’ real inputs and can
replace them with inputs of its own choosing.

2. Coerce a subset of the parties. A coercing party’s actions depend on its coercion-response bit ci.
Parties for which ci = 1 will respond by sending their real input xi to the adversary (we’ll call these
“puppet” parties). Parties for which ci = 0 will respond by sending the fake input x′i to the adversary.

At any time after coercing a party, the adversary can provide it with an alternate input x′′i . If ci = 1,
the coerced party will use the alternate input instead of its real one (exactly as if it were corrupted). If
ci = 0, the party will ignore the alternate input (so the output of the computation will be the same as
if that party were honest). There is one exception to this rule, and that is if the alternate input is the
special value ⊥, signifying a forced abstention. In this case the party will use the input ⊥ regardless
of the value of ci.

I can perform these actions iteratively (i.e., adaptively corrupt or coerce parties based on information gained
from previous actions), and when it is done the ideal functionality computes the function. I’s view in the
ideal case consists its own random coins, the inputs of the corrupted parties, the inputs (or fake inputs) of
the coerced parties and the output of the ideal functionality f(x1, . . . , xn) (where for corrupted and puppet
parties xi is the input chosen by the adversary).

Note that in the ideal world, the only way the adversary can tell if a coerced party is a puppet or not is by
using the output of the computation – the adversary has no other information about the coercion-response
bits.

4.5.2 The Real World

Our real-world computation setting is also an extension of the real-world setting in the post factum inco-
ercibility model. We have n players, P1, . . . , Pn, with inputs x1, . . . , xn and fake inputs x′1, . . . , x

′
n. The

adversary in the real-world is denoted A (the “real” adversary).
The parties are specified by interactive Turing machines restricted to probabilistic polynomial time.

Communication is performed by having special communication tapes: party Pi sends a message to party Pj
by writing it on the (i, j) communication tape (we can also consider different models of communication, such
as a broadcast tape which is shared by all parties). Our model does not allow erasure; communication tapes
may only be appended to, not overwritten. The communication is synchronous and atomic: any message
sent by a party will be received in full by intended recipients before the beginning of the next round.

We extend the post-factum incoercibility model by giving each party a private communication channel
with the adversary and a special read-only register that specifies its corruption state. This register is
initialized to the value “honest”, and can be set by the adversary to “coerced” or “corrupted”. In addition,
each party receives the coercion response bit ci. We can think of the ITM corresponding to each party as
three separate ITMs (sharing the same tapes), where the ITM that is actually “running” is determined by
the value of the corruption-state register. Thus, the protocol specifies for party Pi a pair of ITMs (Hi, Ci),
corresponding to the honest and coerced states (the corrupt state ITM is the same for all protocols and all
parties).

The computation proceeds in steps: In each step A can:

1. Corrupt a subset of the parties by setting their corresponding corruption-state register to “corrupted”.
When its corruption-state register is set to “corrupted”, the party ouputs to the adversary the last

90 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

state it had before becoming corrupted, and the contents of any messages previously received. It then
waits for commands from the adversary and executes them. The possible commands are:

• Copy to the adversary a portion of one of its tapes (input, random, working or communication
tapes).

• Send a message specified by the adversary to some subset of the other parties.

These commands allow the adversary to learn the entire past view of the party and completely control
its actions from that point on. We refer to parties behaving in this manner as executing a “puppet
strategy”.

2. Coerce a subset of the parties by setting their corresponding corruption-state register to “coerced”.
From this point on A can interactively query and send commands to the coerced party as it can to
corrupted parties. The coerced party’s response depends on its coercion-response bit ci. If ci = 1, the
party executes the puppet strategy, exactly as if it were corrupted. If ci = 0, it runs the coercion-
resistance strategy Ci instead. The coercion-resistance strategy specifies how to respond to A’s queries
and commands.

3. Send commands to corrupted and coerced parties (and receive responses).

A performs these actions iteratively, adaptively coercing, corrupting and interacting with the parties. A’s
view in the real-world consists of its own randomness, the inputs, randomness and all communication of
corrupted parties, its communications with the coerced parties and all public communication.

4.5.3 A Formal Definition of Receipt-Freeness

Definition 4.3. A protocol is receipt-free if, for every real adversary A, there exists an ideal adversary
I, such that for any input vector x1, . . . , xn, fake input vector x′1, . . . , x

′
n and any coercion-response vector

c1, . . . , cn:

1. I’s output in the ideal world is indistinguishable from A’s view of the protocol in the real world with
the same input and coercion-response vectors (where the distributions are over the random coins of I,
A and the parties).

2. Only parties that have been corrupted or coerced by A in the real world are corrupted or coerced
(respectively) by I in the ideal world.

It is important to note that even though a protocol is receipt-free by our definition, it may still be possible
to coerce players (a trivial example is if the function f consists of the player’s inputs). What the definition
does promise is that if it is possible to coerce a party in the real world, it is also possible to coerce that party
in the ideal world (i.e. just by looking at the output of f).

4.5.4 Receipt-Freeness of Our Voting Protocol

Coercion-Resistance Strategy. The voter begins by running the honest protocol. If at any point during
the protocol the voter is coerced with fake input c′, the voter simulates a protocol execution up to that
point, using the c′ as the input and same random choices made in the real execution. Any queries made by
A about past history will be answered using the simulated transcript. A must require a coerced voter to
send the following messages to the DRE, in the proper order (starting from the stage at which the voter was
corrupted):

1. A candidate c′. In this case the voter sends her real input, c. The simulated transcript will be identical
to the real one, except for the voter sending c′ instead of c.

2. A subset Rv ⊂ [(m+ 2)k]. The voter sends Rv. The simulated transcript is identical to the real one.

3. For every possible candidate c′′, a k bit string bc′′ .

4.5. INCOERCIBILITY AND RECEIPT-FREENESS 91

Case 1 c′′ = c (the voter’s real choice). Here what really happens is that theDRE sends k (Committed, v, v(c)
i)

messages. The voter then sends bc and receives bc back from the DRE. In the simulated transcript,
however, the voter first sends bc and only then receives the k (Committed, v, v(c)

i) messages and
bc.

Case 2 c′′ = c′ (the voter’s fake choice). What really happens is that the voter first sends bc′ and
only then receives the k (Committed, v, v(c′)

i) messages and bc′ . In the simulated transcript,
however, the voter first receives k (Committed, v, v(c′)

i) messages, then sends bc′ , then receives
bc′ back from the DRE. Note that the simulated transcript will contain the receipt of the k

(Committed, v, v(c′)
i) messages before A asks the voter to send anything — this will be a simu-

lated response what A required the voter to transmit in the previous step.

Case 3 c′′ 6= c′ ∧ c′′ 6= c. Here the voter can simply follow the instructions of A.

If A diverges from the sequence outlined above, the voter halts (abstains). Since we do not assume voters
have access to secure computers, our coercion-resistance strategy must be simple enough to be executed by
an unaided human. Note that while we formally require the voter to “simulate” the fake transcript, it is
almost identical to the real transcript, except at the points where the voter uses her real input instead of
the one provided by the adversary.

Assumptions. Note that while Canetti’s composition theorem allows us to prove UC security in the hybrid
model (replacing a protocol that UC-realizes Commit-with-Copy by its ideal functionality), the theorem does
not apply to receipt-freeness. To prove that our protocol is receipt-free, we must “open the box” and consider
the implementation of F (C&C).

The receipt-freeness of our protocol relies on the fact that the voter’s view of the protocol between steps
7 and 9 of the “real proof” stage in the ballot casting phase (Protocol 4.1a) is a deterministic function
of her previous view (i.e., the DRE’s commitment cannot add any entropy to the voter’s view). While
the UC-definition of F (C&C) does indeed meet this criterion (the messages received are all of the form
(Committed, r, r′), where r, r′ can be computed in advance by the voter), a real implementation of F (C&C)

will probably not work this way (since the commitment will contain at least some random-looking string).
To prevent this, we add a “physical commitment” to the protocol. This commitment can be implemented,
for example, by placing an opaque shield on part of the DRE printer’s output, so that the voter can see
that something has been printed, but not what. The physical commitment is only required between the
steps 7 and 9 of the “real proof” stage. We require that the implementation of F (C&C) work even with such
a shield in place (i.e., if the LinkedCopy or FakeCopy commands are interactive, the voter’s messages
cannot depend on the DRE’s messages.

We also require that, for any a, a′, i, s, s′, the transcripts of FakeCopy a, a′, s, FakeCopy a, a′, s′ and
LinkedCopy a, a′, i commands be indistinguishable and that the transcripts of SrcCommit a, b, F and
SrcCommit a, c, F ′ commands be indistinguishable for any a, b, c, F, F ′. This is already guaranteed by the
fact that a protocol UC-realizes F (C&C).

Ideal Simulator. For the Ballot Casting phase, I simulates the DRE as well as any honest or coerced
voters. It uses a fixed value q as the input for all honest and coerced voters (it doesn’t know the real inputs).
When A corrupts or coerces a voter, I also corrupts or coerces the ideal voter. and internally reruns the
simulation of that voter’s session, using the same random choices it previously made and the voter’s real
input (or the supplied fake input in case of a coerced voter). When A sends the fake candidate c′ in step 1 of
the coercion-resistance strategy, I gives c′ as an alternate input to the corresponding coerced ideal voter. If
A causes one of the coerced voters to abort, I changes the corresponding ideal voter’s input to ⊥. Note that
I is behaving exactly as would the ideal adversary in the UC security proof for honest and corrupt voters.

We only allow the adversary to coerce or corrupt voters (once the DRE is corrupted, we no longer
guarantee secrecy of the votes, much less receipt-freeness). Therefore, given the tally (which I received from
F (V)), I can simulate the Final-Tally and Universal Verification phases completely (A cannot do anything
in these stages, since voters do not participate).

92 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Proof of Indistinguishability. We make use of the fact that our protocol UC-realizes F (V) in proving
that the output of the simulation is indistinguishable from the real adversary’s view. A key point is that the
visible transcript of a voter’s coercion-resistance strategy is always identical to the real transcript no matter
what the voter’s real input is.

In the ideal world, the adversary cannot, by manipulating corrupt voters, cause F (V) to output something
different from the case where the corrupt voters just vote. Thus, these two cases must also be indistinguish-
able in the real world (where we run the protocol). Also, note that coerced voters run a coercion-resistance
strategy that can be simulated by an adversary using only public information, and they do not change their
actual input. Therefore, the transcript of communication with both coerced and corrupted voters cannot
allow the adversary to distinguish between the real-world and simulated transcripts in the Final-Tally and
Universal Verification phases, or transcripts for honest voters in the Ballot-Casting phase.

It remains to show that the adversary cannot distinguish between the real-world and simulated transcripts
of coerced voters in the Ballot Casting phase (corrupted voters are simulated exactly, so the transcripts are
identically distributed). Since I simulates the DRE and coerced voter exactly, any difference between the
simulated and real world must be due to the difference in the simulated party’s input. However, the public
transcript of the coercion-resistance strategy is indistinguishable for any two inputs (since the only messages
appearing in the public transcript that may contain information about the input are the commitment mes-
sages sent by the DRE, and by the hiding property of F (C&C) they must be indistinguishable). Furthermore,
the simulated transcript is identical to the real transcript had the voter actually used the input given by the
adversary.

4.6 Proof of Accuracy and Privacy (Theorem 4.1)

We prove our voting scheme securely realizes the voting functionality F (V). Since the F (V) functionality
provides both accuracy and privacy, we can conclude our voting scheme has these properties as well. The
proof is in the UC framework.

Briefly, the UC framework considers two “worlds”: an “ideal world”, in which the ideal functionality
exists, the honest parties send their inputs to the ideal functionality and output whatever they receive from
it, and the “real world”, where the F (C&C) functionality exists and parties behave according to the protocol.
In both worlds, there exists an adversarial environment machine, Z, that specifies the inputs for the honest
parties and receives their outputs. In the real world, there exists a real adversary, A, that is controlled by
Z (it sends any messages it receives to Z, and performs any actions specified by Z).

To prove a protocol realizes a given ideal functionality, we must describe an ideal simulator, I, for the
ideal world, that simulates the view of A, and show that the view of any environment machine running with
I in the ideal world is indistinguishable from its view when running with A in the real world.

The idea behind the simulation run by I is very simple. I begins by “guessing” the inputs for all of
the honest parties. It then simulates A, F (C&C) and the honest parties exactly according to the protocol,
maintaining a “provisional view” for the simulated honest parties. Whenever I learns information that
contradicts its guesses (e.g., if an honest party is corrupted), it “rewrites” the provisional view of all the
affected parties using this new information. The protocol is constructed so that this rewriting can always be
done in a way that is consistent with Z’s view of the protocol up to that point.

The indistinguishability follows from the fact that the environment’s view contains no information about
honest parties’ votes (beyond the final tally), and the fact that a cheating DRE will remain undetected with
negligible probability (in the security parameter k).

4.6.1 The Ideal World Simulation

In the more detailed description of the simulation below, we focus on the points at which I deviates from
just simulating the parties according to the protocol. We assume the following throughout the simulation:

• Whenever a corrupt voter is instructed by A to send “bad” messages (syntactically incorrect) to an
honest DRE, I treats this as an abstention.

4.6. PROOF OF ACCURACY AND PRIVACY 93

• If the DRE is corrupt and instructed to send bad messages to an honest voter or to the bulletin board,
I sends the Halt command to F (V) and halts the simulation.

We now describe I’s actions in each phase of the protocol. These actions depend in each stage on which
of the parties are corrupt at that point.

Ballot Casting

Below we describe the simulation for voter v. I begins simulation of this phase if voter v is corrupt and
A instructs the voter to cast a ballot, or if voter v is honest and a (Voted, v) or (Voted, v, xv) message is
received from F (V).

Case 1: Both v and the DRE are honest (F (V) broadcast (Voted, v)). In this case, A only receives the output
from the broadcast channel, which depends only on v’s random challenges (and so will be consistent
with any replay of the simulation as long as I uses the same random challenges). The output on the
broadcast channel consists of:

(a) a (SrcCommitted, v, `) message from F (C&C)

(b) the random subset Rv
(c) The “proofs” that v is a commitment to the correct candidate, for each candidate c:

i. (Committed, v, v(c)
i) for 1 ≤ i ≤ k

ii. The challenge r(c)
v

iii. k messages from F (C&C) of the form (Opened, v(c)
i , c) or (CopyOf, v(c)

i , vR̄
(c,i)
v) depending

on the bits of r(c)
v .

Case 2: v is corrupt and the DRE is honest (A instructed v to begin the voting phase and send xv to the
DRE). In this case, I sends a Vote xv command to F (V) on behalf of v, and simulates an honest DRE
exactly according to protocol.

Case 3: v is honest and the DRE is corrupt (F (V) sent (Voted, v, xv) to I). If v’s input in the provisional view
is not xv, I rewrites the provisional view to make it so. Note that since the simulated v has sent no
messages yet, this does not change the environment’s view of the protocol so far. I can then simulate
the honest voter exactly according to protocol.

Case 4: Both v and the DRE are corrupt. In this case I already knows xv, the real input of voter v, and
sends a Vote xv command to F (V) on behalf of v. I simulates both parties acting according to A’s
directions. Note that A may instruct the DRE to send a SrcCommit command to F (C&C) for a value
other than xv or to send a BadCommit command instead. In this case, I may be required to change
v’s vote at the beginning of the tally phase.

Since we allow the adversary to be adaptive, we must also consider corruptions that occur during the
ballot casting phase:

1. A corrupts the DRE. In this case I also corrupts the DRE in the ideal world and receives from F (V)

all the votes cast so far. If the votes cast by honest voters are different than I’s guesses, I rewrites the
provisional view using the new information. Note that this does not change any message previously
seen by the environment, since the only messages affected are those between honest voters, the honest
DRE and the commitment functionality.

2. A corrupts voter v. In this case, I also corrupts voter v and learns its input xv. If the DRE is honest,
v has already voted and xv differs from I’s guess, I rewrites its provisional view to take into account
the new information; since both v and the DRE were previously honest, this rewritten view will still
be consistent with the environment’s view. If the DRE was already corrupt, then either v has not yet
voted, in which case I’s simulation so far did not depend on xv, or v has already voted, in which case
I already learned xv. Hence, I will not have to rewrite the provisional view at this point.

94 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Final Tally

This phase begins after the voters have all cast their ballots (or abstained). If the DRE is corrupt before
or during publication of the final tally (step 2 in Protocol 4.2), I may have to alter some of the votes cast
by previously corrupted voters. If the corrupt voters’ votes can be changed so that the tally matches the
one announced by the DRE, I sends the correponding ChangeVote commands to F (V) on behalf of the
corrupt voters.

If not, I continues the simulation without sending ChangeVote commands. In this case, the output of
the verifier in the ideal world may differ from its output in the real world. However, we show that both the
simulated and real-world verifiers would abort in this case with overwhelming probability (in Claim 4.5).

If the DRE is corrupted during the final tally phase (or if the DRE is honest, and one or more honest voters
are corrupted), I learns the real inputs of all the honest voters (in the former case) or the newly corrupted
voters (in the latter case). I rewrites the provisional view to be consistent with the new information, and
continues with the simulation exactly following the protocol. The rewriting in this case may require I to
change the values of its secret random coins, depending on what the simulated (honest) DRE has already
published:

Case 1: If the shuffled votes have not yet been published (step 2 in Protocol 4.2), I is only required to rewrite
messages between the honest voters and the DRE, and between the DRE and F (C&C) (it can leave its
secret coins unchanged).

Case 2: If the shuffled votes have been published, but the beacon’s random challenge bits have not yet been
received (step 10 in Protocol 4.2), I rewrites the permutation π0 so that the shuffled votes are consistent
with the inputs (note that there must exist such a valid permutation, since the DRE was honest up to
this point).

Case 3: If the beacon’s random challenge bits have already been received, I rewrites πi for all i such that bi = 1
(i.e., those permutations that will remain secret), in addition to π0.

Universal Verification

In this stage only the verifier participates, and cannot be corrupted. The verifier runs a deterministic
algorithm on the information from the public broadcast channel. I simulates this algorithm. If verification
fails I sends the Halt command to F (V).

4.6.2 Indistinguishability of Views

It remains to show that no environment machine can distinguish between the the real world and the ideal
world in which I runs the simulation detailed above.

The views of the different parties in the real world are:

Verifier: The verifier’s view consists of all the published information:

1. all the messages sent by F (C&C)

2. all the messages sent by the random beacon (challenge bits b1, . . . , bk and challenge permutations
σ1, . . . , σn).

3. the voters’ random coins (consisting of the set Rv and the challenges r(1)
v , . . . , r

(m)
v)

4. The messages published by the DRE.

Voter v: v’s view consists of:

1. The input xv.
2. The voter’s random coins
3. The verifier’s view

DRE: The DRE’s view consists of:

4.6. PROOF OF ACCURACY AND PRIVACY 95

1. The DRE’s random coins (consisting of the permutations π0, . . . , πk)
2. The views of all the voters (inputs and random coins).
3. The verifier’s view

The environment’s view in the real-world consists of the inputs of all the voters, the verifier’s view and
the views of all the corrupted parties.

Up to the final tally phase the environment’s view of I’s simulation is identical to its view in the real
world. This is because the only difference between I’s simulation and the real world is the inputs of the
honest voters that I guesses incorrectly (note that I maintains, throughout the simulation, a provisional
view that is consistent with the real world up to the unknown inputs of the honest voters at every point in
the simulation).

If the DRE is honest, the environment’s view consists only of the views of the verifier and the corrupt
voters – these views are independent of the honest voters’ inputs (since they can be deterministically com-
puted from the random coins of the voters and the inputs of the corrupt voters). If the DRE is corrupt, I
knows the inputs of the honest voters, hence its simulation is perfect.

In the final tally phase, I’s simulation is also perfect unless the output of F (V) does not match the tally
output by the simulated verifier. If the DRE is honest, then this output is always identical. I sends a Halt
command to F (V) when the simulated verifier would detect the DRE cheating, so in these cases the output
is identical as well. The only way the output can be different is if F (V) outputs one tally while the simulated
DRE outputs a different tally. The simulated DRE must send a SrcCommit v, c, F or BadCommit v,Q, `
command for each voter in the Ballot Casting phase (otherwise verification will always fail in the universal
verification phase, in which case I will send a Halt command to F (V) as well). If the tally output in the
simulation differs from that output by F (V), the DRE must have been corrupt at the time it announced the
final tally, and there cannot exist an assignment of votes to the corrupt voters which could account for the
tally announced by the DRE (otherwise I would have changed the votes sent to F (V)). Thus, one of the
following must be the case:

Case 1: For at least one honest voter v, the DRE sent a SrcCommit v, x′, F such that x′ 6= xv, or a Bad-
Commit v,Q, ` command in which less than 7

8 of values in Q are xv. By Claim 4.4, the probability
that the DRE does this but is not detected by the verifier is less than 2−Ω(k). Since I simulates an
honest voter and the verifier exactly, both the simulated and real verifiers would abort with probability
1− 2−Ω(k) in this case.

Case 2: For all honest voters, at least 7
8 of the commitments in the Ballot Casting phase are for their chosen

candidate. Denote M ′′ the matrix to which the DRE commits in the final tally phase (as defined in
Section 4.4.2; this would be the lower right-hand matrix in Figure 4.4.2). For clarity, we will say “the
ith copy of v” rather than “the copy whose index is R(i)

v ”.

Call the pair of rows i, k + i in matrix M ′′ valid if they are constructed as required by the protocol:
there exists a permutation πi such that the jth element of row i in M ′′ is the σπi(j)(i) copy of πi(j) and
the jth element of row k+ i is the k+ i copy of πi(j) (the element j, i is considered the tth copy of v

if the response of F (C&C) to a ProveCopy j, i command would be a (CopyOf, j, i , v, t) message;
this means rows containing “bad” copies created using the BadCommit command are also considered
valid). Again we have two possible cases:

Case 2.1: The matrix committed to by the DRE contains more than 1
8k invalid row pairs. The beacon

chooses a random subset of the row pairs to test for validity: for every i such that bi = 0, the
DRE must prove that the row pair i, k+i is valid by issuing the appropriate commands to F (C&C).
If an invalid row pair is chosen for verification of validity, it will be detected with probability 1.
Since b1, . . . , bk are i.i.d. variables and Pr[bi = 0] = 1

2 , the Chernoff bound implies that 1
8k invalid

row pairs will escape detection with probability at most 2−Ω(k).
Case 2.2: The matrix committed to by the DRE contains at least 7

8k valid row pairs. By Claim 4.5, the
probability that there is a mismatch between the simulated and ideal worlds is bounded by 2−Ω(k).

96 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

The case analysis above shows that the probability of each of the possible “bad events” (those in which there
is an inconsistency between the real and ideal worlds) is bounded by 2−Ω(k). Since there are a constant
number of such events, by the union bound, the statistical difference between the environment’s view in the
real and ideal world is at most 2−Ω(k).

In order to complete the proof of Theorem 4.1, it remains to prove the claims below.

Claim 4.4 (Probability of catching a DRE making bad commitments to honest voters). If, in the Ballot
Casting phase, the DRE makes more than 1

4 of the copies bad (i.e., that open to something other than the
voter’s choice), it will be detected with probability at least 1− 2−Ω(k) in the universal verification phase.

Proof. In the proof stage, with probability 1 − 2−Ω(k) the honest voter requires the DRE to prove for a
random 1

4 (m + 1)k of the commitments that they are correct copies (since the voter decides independently
with probability 1

2 whether to require a copy or an open test for each of the (m+ 1)k commitments, by the
Chernoff bound the probability that the voter performs the copy test on less than 1

4 (m+ 1)k is bounded by
2−Ω(k)). One of the following must be the case:

Case 1: There are more than 1
8 (m + 1)k elements that are fake copies (they were generated by a FakeCopy

command and will fail the copy proof test). The probability that none will be selected for the copy
proof test is bounded by (1

2)
1
8 (m+1)k = 2−Ω(k).

Case 2: At least 7
8 of the commitments are linked copies. In this case, since more than 1

4 of the copies are bad,
at least 1

8 of the linked commitments must be bad copies. The voter selects a random subset of size 1
4k

for the open test with probability at least 1−2−Ω(k) (again by the Chernoff bound). Each commitment
selected is a bad copy with probability at least 1

8 (the events are not independent, but each “good”
selection only increases the probability that the next selection will be bad, so they dominate a series
of independent events). Thus, the probability that none of the selected commitments is bad is at most
(7

8)
1
4k.

By the union, bound, the probability that the DRE will not be caught is bounded by 2−Ω(k)).

Claim 4.5 (Probability of catching a cheating DRE announcing an incorrect tally). Denote M the matrix
committed to by the DRE before any permutations have been applied (i.e., column v of M consists of 2k
commitments to xv if the DRE issued a SrcCommit v, xv, F command in the ballot casting phase, or of
commitments to the values specified in Q if it issued a BadCommit v,Q, ` command).

For any adversary A in the real world, if for every honest voter v, at least 7
8 of the commitments in

column v of M are commitments to xv (“good commitments”) and at least 7
8 of the row pairs in M ′′ are

valid (M ′′ is the actual matrix committed to by the DRE, after rows and columns of M are permuted), then
the probability that the DRE outputs a “bad” tally and is not detected by the verifier is bounded by 2−Ω(k) (a
tally is “bad” if there does not exist an assignment of inputs to the corrupt voters that would result in that
tally).

Proof. For any k, n and 2k×n matrix X, let top(X) be the k×n matrix consisting of the first k rows of X,
and bot(X) the k × n matrix consisting of the last k rows of X (i.e., row i of bot(X) is row k + i of X).

We can think of the adversary, A, as playing the following game:

1. A selects the matrix M , under the sole constraint that each column v corresponding to an honest voter
contains at least 7

8 “good” commitments (to xv).

2. A receives the permutations σ1, . . . , σn from the random beacon.

3. Possibly depending on σ1, . . . , σn, A selects at least to 7
8k row pairs that will be marked valid.

4. A receives the bits b1, . . . , bk from the random beacon.

The adversary “wins” if all the valid row pairs for which bi = 1 (i.e. that the adversary will be required
to open) have the same tally (after the columns in top(M) are permuted using σ1, . . . , σn). Note that the
permutations π1, . . . , πk that are chosen by the adversary in Protocol 4.2 are used only to maintain voter
privacy and have no effect on the adversary’s cheating probability.

4.7. BASING COMMIT-AND-COPY ON STANDARD COMMITMENT 97

We can assume w.l.o.g. that every row of bot(M) for which bi = 1 has at least one “bad” commitment
for an honest voter. If not, then either the opened tallies do not match each other (in which case both the
real and simulated verifiers will abort), or the tally announced by the DRE is consistent with the one output
by F (V), since all honest voters have good commitments. Denote ji ∈ [n] the column index of the first bad
commitment in row i. We’ll call these commitments the “token” bad commitments.

Since the bis are i.i.d. with expectation 1
2 , by the Chernoff bound Pr

[∑k
i=1 bi <

1
4k
]
< 2−Ωk. Assume

that
∑k
i=1 bi ≥

1
4k (i.e., there are at least 1

4k indices i such that bi = 1). Denote B .= {i | bi = 1} the set of
opened rows.

In order for A to “win”, the commitments bot(M)i,ji and top(M)σ−1
ji

(i),ji
must be to the same value for

every i ∈ B. In particular, this means the commitment top(M)σ−1
ji

(i),ji
must be bad for A to win. For all

i ∈ B, let Ii be a random variable indicating that this is not the case (i.e. I1 = 1 if top(M)σ−1
ji

(i),ji
is a

commitment to xv and Ii = 0 otherwise). If
∑
i∈B Ii >

1
8k, then both the real and simulated verifier will

always abort. This is because, no matter how A chooses the 1
8k invalid row pairs, there will remain at least

one valid row pair for which Ii = 1, i.e., there is a valid row pair with a mismatch between the two rows that
will be detected by the verifier.

We claim that Pr
[∑

i∈B Ii ≤
1
8k
]
< 2−Ω(k) (where the probability is over the choice of σ1, . . . , σk).

We assume that for every honest voter v at least 7
8 of the entries in column v of M are commitments to

xv (“good” commitments). Hence, we can assume w.l.o.g. that top(M) has at least 7
8k good commitments

in every column that corresponds to an honest voter. If this is not the case then bot(M) has this property;
then we can consider the equivalent game in which we exchange bot(M) and top(M) and the permutations
σ1, . . . , σn by their inverses.

For every honest voter v consider the following algorithm for producing the random permutation σv:

1: Initialize S ← {1, . . . , k}
2: for 1 ≤ i ≤ k do
3: Choose a random index j ∈R S
4: Let S ← S \ {j} {Remove j from S}
5: Set σv(i)← j
6: end for

Let {I ′i}i∈B be i.i.d. binary random variables such that Pr[I ′i = 1] = 5
8 . Then Pr[

∑
Ii ≤ 1

8k] ≤
Pr
[∑

I ′i ≤ 1
8k
]
. This is because even if we remove the indices of 1

4k good commitments from the set S,
there still remain at least 7

8k −
1
4k = 5

8k indices of good commitments in S, hence for each of the first 1
4k

rows of every column, the element mapped to that row is a good commitment with probability at least 5
8 —

even conditioned on the elements mapped to all previous rows.
By the Chernoff bound, Pr

[∑
i∈B I

′
i ≤ 1

8k
]
≤ 2−Ω(k), hence we can conclude that Pr

[∑
i∈B Ii ≤

1
8k
]
<

2−Ω(k).

4.7 Basing Commit-and-Copy on Standard Commitment

In this section we give a protocol that implements the Commit-and-Copy functionality using any UC com-
mitment scheme.

4.7.1 Protocol Description

The protocol implements F (C&C[k]) between two players, the committer and the receiver, based on standard
UC commitment (we denote the standard commitment functionality F (C)).

To clarify the presentation, we informally describe the construction in three stages, first giving a simpler
(but flawed) construction that works for non-interactive commitments, then fixing the flaw, and finally
describing the extension to any UC commitment. A formal specification is given in Protocol 4.3, composed
of Protocols 4.3a (from the committer’s side) and Protocol 4.3b (from the receiver’s side)

98 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Figure 4.7.1: SrcCommit r,“Yes”, (“No”,“No”,“No”)

Figure 4.7.2: Open

Figure 4.7.3: ProveCopy

4.7. BASING COMMIT-AND-COPY ON STANDARD COMMITMENT 99

The main idea behind the construction is to use nested commitments: commitments to commitments.
For non-interactive commitments, a commitment to a value is simply a string. A commitment to this string
is a nested commitment to the value. In our simple (but flawed) construction, the “source” commitment to a
value v is a vector of k nested commitments to the value v. Call the actual commitments to v the “internal”
commitments, and the nested commitments the “external” commitments. A LinkedCopy r, r′, i command
for this construction consists of sending the ith internal commitment; Since the receiver only sees the external
commitments, this does not reveal the index i. In fact, the receiver can’t tell that a given commitment is
really an internal commitment (unless the committer opens the corresponding external commitment). Thus,
the FakeCopy r, r′, s command consists of sending a new commitment to s′. Opening a copy (linked or
fake) is done by opening the internal commitment; this reveals the value, but not whether the copy was
linked or fake. To execute the ProveCopy r′ command, the committer opens the external commitment
corresponding to the internal commitment with tag r′.

Given non-interactive commitments, this construction almost works, but does not fully realize the func-
tionality F (C&C[k]). The flaw is that an adversary can generate multiple external commitments to the same
internal commitment. This allows the adversary to choose, when executing the ProveCopy command, which
index to reveal (rather than being committed to a specific index for each copy at the time of the SrcCommit
command, as required by F (C&C[k])). To overcome this flaw, we modify the protocol slightly: each internal
commitment is replaced by a commitment pair : a “left” internal commitment, which is a commitment to
the actual value, and a “right” internal commitment, which is a commitment to the index. The external
commitment is now a commitment to the left/right pair. To execute the Open command, the committer
opens only the left internal commitment. To execute the ProveCopy command, the committer opens both
the external and the right internal commitment (but not the left internal commitment). The receiver can
now verify that the index of the external commitment is consistent with the right internal commitment.

The final modification of the construction is to allow it to work with any (possibly interactive) UC
commitment. In this case, we can no longer think of the commitment as a string. There are two main
differences between the notion of non-interactive commitment required to make the above construction work
and the one guaranteed by the ideal commitment functionality, F (C): one is that F (C) notifies the receiver
of the tag for any commitment made (so we can’t keep the internal commitments completely private), and
the second is that the commitment tag can be chosen arbitrarily by the committer (so we can’t postpone
the internal commitments to when we need to make a copy). We overcome this by having the committer
commit ahead of time to all possible internal commitments (including fake commitments) in a random order.
Thus, the internal commitment tags don’t give any information about the type of copy or its index. Figure
4.7.1 shows an example of the commitments generated for a SrcCommit r,“Yes”, (“No”,“No”,“No”)
command (with k = 3). The circles denote commitment tags, and the squares surround the corresponding
commitment values. Figure 4.7.2 shows how an Open command would look to a receiver. The dashed lines
signify commitments that haven’t been opened (the receiver doesn’t “see” those). Figure 4.7.3 shows the
same for a ProveCopy command (LinkedCopy and FakeCopy commands consist of sending the index of
one of the internal commitment pairs).

In the remainder of the section we prove:

Theorem 4.6. Protocol 4.3 UC-realizes F (C&C[k])

The proof of the theorem is in two parts: a description of the ideal-world simulator, I, and a proof that
the environment’s view in the real-world is indistinguishable from its view in the ideal world.

4.7.2 The Ideal-World Simulation

The ideal simulator for this protocol uses the same basic framework as the simulator for the voting protocol
(in Section 4.6.1): I maintains a “provisional view” for the honest parties, and rewrites the view if it
learns new, conflicting, information. I simulates F (C) and honest parties exactly except for rewriting the
provisional view (in that case, the rewritten view will also be the result of a correct simulation, but with
possibly different inputs and randomness). If both parties are honest, I does not perform any action until
one of the parties is corrupted by the adversary (the adversary cannot see messages passing between the two
honest parties). When a party is corrupted by A, I corrupts the corresponding ideal party. The corrupt

100 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Protocol 4.3a F (C&C[k]) from F (C) (Committer)

SrcCommit r, s, F Let ` = |F | + k and denote F = (s′1, . . . , s
′
`−k). Note: the commitment tags ti,X (for

X ∈ {L,R,E}) consist of the string [r; i,X].
1: Send a (SrcCommitting, r, `) message to the receiver.
2: Choose a random permutation πr : [`] 7→ [`].
3: Let x1, . . . , x` be the vector consisting of k copies of s followed by the elements of F . (i.e., xi = s

for 1 ≤ i ≤ k and xi = s′i−k for k < i ≤ `).
4: for 1 ≤ i ≤ ` do {Generate the “internal” commitments in a random order}
5: Send a Commit ti,L, xπ−1

r (i) command to F (C). {“Left” internal commitment: to value}
6: Send a Commit ti,R, π−1

r (i) command to F (C). {“Right” internal commitment: to index}
7: end for
8: for 1 ≤ i ≤ k do {Generate the “external” commitments}
9: Send a Commit ti,E , [tπ−1

r (i),L; tπ−1
r (i),R] command to F (C).

10: end for

LinkedCopy r, r′, i (1 ≤ i ≤ k)
1: Send (Copy, r, r′, πr(i)) to the receiver.

FakeCopy r, r′, s (where s = s′i)
1: Send a message (Copyr, r′, πr(k + i)) to the receiver.

Open r′

1: Send (Opening, r′) to the receiver.
2: Let i be the index of the copy in x1, . . . , x` (i.e., the committer previously sent a (Copyr, r′, πr(i))

message to the receiver during execution of the corresponding LinkedCopy or FakeCopy com-
mand. Send Open tπr(i),L to F (C). {This is the “value” part of the commitment to xi}

ProveCopy r′ Previously a LinkedCopy r, r′, i command must have been exe-
cuted.

1: Send (Proving copy, r′, r, i) to the receiver.
2: Send Open ti,E to F (C).
3: Send Open tπr(i),R to F (C).

4.7. BASING COMMIT-AND-COPY ON STANDARD COMMITMENT 101

Protocol 4.3b F (C&C[k]) from F (C) (Receiver)
The receiver maintains three databases to keep track of the commitments: an “internal” commitment tag
database, “external” commitment tag database, and a “mapping” datatabase that maps the tags of com-
mitment copies to internal commitments.

SrcCommit r, s, F Let ` = |F |+ k and denote F = (s′1, . . . , s
′
`−k).

1: Wait to receive the (SrcCommitting, r, `) message from the commiter
2: for 1 ≤ i ≤ ` do {Receive internal commitment pairs}
3: Wait to receive a (Committed, t′L) message from F (C).
4: Wait to receive a (Committed, t′R) message from F (C).
5: Store (r, i, t′L, t

′
R) in the internal commitment database.

6: end for
7: for 1 ≤ i ≤ k do {Receive external commitments}
8: Wait to receive a (Committed, t′E) message from F (C).
9: Store (r, i, t′E) in the external commitment database.

10: end for
11: Output (SrcCommitted, r, `− k)

LinkedCopy r, r′, i (1 ≤ i ≤ k)
1: Wait to receive (Copy, r, r′, i′) from the committer.
2: Verify that r′ does not appear in the mapping database (i.e., no message of the form (Copy∗, r′, ∗)

was previously received from the committer).
3: Store (r′, r, i′) in the mapping database.
4: Output (Committed, r, r′).

FakeCopy r, r′, s (where s = s′i)
1: Wait to receive (Copyr, r′, i′) from the committer.
2: Verify that r′ does not appear in the mapping database (i.e., no message of the form (Copy∗, r′, ∗)

was previously received from the committer).
3: Store (r′, r, i′) in the mapping database.
4: Output (Committed, r, r′).

Open r′

1: Wait to receive (Opening, r′) from committer and (Opened, t′, s) message from F (C).
2: Verify a tuple of the form (r′, r, i′) appears in the mapping database
3: Verify that a tuple of the form (r, i′, t′L, t

′
R) appears in the internal commitment database.

4: Verify that t′ = t′L.
5: Output (Opened, r′, s).

ProveCopy r′ Previously a LinkedCopy r, r′, i command must have been exe-
cuted.

1: Wait for (Proving copy, r′, r, i) from committer.
2: Wait for (Opened, t′E , x) message from F (C).
3: Wait for (Opened, t′R, y) message from F (C).
4: Verify the tuple (r, i, t′E) appears in the external commitment database.
5: Verify a tuple of the form (r′, r, i′) appears in the mapping database
6: Verify that a tuple of the form (r, i′, t′L, t

′
R) appears in the internal commitment database.

7: Verify that x = [t′L; t′R].
8: Verify that y = [r; i]
9: Output (CopyOf, r′, r, i).

102 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

party is simulated correctly (i.e., it will follow all of A’s instructions exactly, and respond to queries about
its view using the provisional view maintained by I). If the simulated (honest) receiver outputs ⊥ at any
time, I sends the Halt command to F (C&C).

Note that the receiver has no input and sends no messages to the committer or to F (C), so I’s simulation
of the honest receiver is always perfect. Its simulated view consists of the messages sent by the committer
and by F (C)— these are never changed when I rewrites its provisional view, so the receiver’s view is always
identically distributed in the real and ideal worlds.

The committer’s input consists of a sequence of commands to F (C&C) (along with their parameters).
When the committer is honest, I guesses the input in order to run the simulation (initially, it guesses the
committer’s input is empty). Note that the honest committer’s view in the real world consists entirely of
its input and the random coins used to construct the permutations πr when executing the SrcCommit
command. When the receiver is corrupted and I receives messages from F (C&C) to the receiver, it gains new
information about the committer’s input that may conflict with the guesses used to construct the provisional
view:

(SrcCommitted, r, `) I now knows the committer’s input contains a SrcCommit r, s, F command (it
initially guesses s = 0 and F a vector of zeroes of size ` − k). I simulates an honest committer
executing SrcCommit r, s, F (note that the corrupt receiver only learns r, `; the vector of internal
and external commitment tags is deterministic).

(Committed, r, r′) I now knows the committer’s input contains a LinkedCopy r, r′, i or a FakeCopy
r, r′, s command. It makes a guess consistent with its provisional view (choosing a random index i that
is still unused according to the provisional view) and simulates the honest committer executing the
command. Note that the (Copyr, r′, i′) message sent to the corrupt receiver always contains random
index i′ (chosen uniformly from the set of unused indices), since I choses πr randomly as required by
the protocol for the honest committer.

(Opened, r, s) I learns that the committer’s input contains an Open r command, and also the value of
the commitment r. I rewrites its provisional view so that the value of the commitment r is now s
(it can do this by rewriting the internal database of the simulated F (C) for the corresponding internal
commitments). I then simulates the Open r command following the protocol exactly. Note that
rewriting the provisional view in this case does not change anything in the corrupt receiver’s view.

(CopyOf, r′, r, i) I learns that the committer’s input contains a ProveCopy r′ command, and also that the
commitment with tag r′ was generated by a LinkedCopy r′, i command. I rewrites the the provisional
to make it consistent with this new information. If I previously sent a (Copyr, r′, j) message to the
receiver, for i 6= πr(j), I rewrites πr by choosing a new permutation uniformly at random from the
set of permutations that is consistent with the ProveCopy commands executed so far. Otherwise,
I rewrites its provisional view by rewriting the messages sent to the simulated F (C). Note that the
rewriting does not affect the corrupt receiver’s view in any way; the receiver’s view of a LinkedCopy
and FakeCopy command are identical and changing the value of Commit commands to F (C) does
not change the receiver’s view at all. I then simulates the honest committer executing a ProveCopy
r′ command.

When a previously honest committer is corrupted, I learns the committer’s entire input. If the receiver
is honest, I simply runs internally the simulation of the honest committer with the new information. If
the receiver is corrupt, I already has a provisional view for the committer; it rewrites the provisional view
using the new information by rewriting the random permutations and the values of the commitments sent
to F (C) (note that I never has to rewrite the values of commitments that have already been opened or
permutation indices that have already been revealed, since those will have been rewritten during the Open
and ProveCopy commands).

To complete the description of the simulation, we specify what commands I sends to F (C&C) on behalf
of a corrupt committer (the receiver never sends commands to F (C&C)):

SrcCommit If the committer is corrupt and sent a message of the form (SrcCommitting, r, `) to the
simulated honest receiver, I does the following:

4.7. BASING COMMIT-AND-COPY ON STANDARD COMMITMENT 103

1: for 1 ≤ i ≤ ` do {Wait for committer to send internal commitment pairs}
2: Wait for commiter to send a Commit ti,L, xi command to F (C).
3: Wait for commiter to send a Commit ti,R, yi command to F (C).
4: end for
5: for 1 ≤ i ≤ k do {Wait for committer to send external commitments}
6: Wait for commiter to send a Commit ti,E , ei command to F (C).
7: if ei = [tj,L, t′;] then {tj,L is a valid “left” commitment to xj}
8: s(i) ← xj
9: else

10: s(i) ← 0
11: end if
12: end for
13: Set Q← (s(1), . . . , s(k))
14: Send a BadCommit r,Q, ` command to F (C&C).

LinkedCopy or FakeCopy If the committer is corrupt and sent a message of the form (Copy, r, r′, j) to
the receiver, I simulates the receiver until the end of the command execution. I’s message to F (C&C)

depends on the committer’s previous actions:

Case 1: The committer was previously honest and sent a SrcCommit r, s, F to F (C&C). I must have
previously run the simulation of the SrcCommit command and chosen the permutation πr. If
πr(j) ≤ k, I sends a LinkedCopy r, r′, πr(j) command to F (C&C). If πr(j) > k, I sends a
FakeCopy r, r′, s′πr(j)−k to F (C&C) (where s′i is the ith element of F).

Case 2: The committer was corrupt when executing the SrcCommit command (in which case I sent
a BadCommit r,Q, ` command to F (C&C)). Let s′ be the committed value corresponding to
tj,L in the execution of the SrcCommit command (i.e., the committer sent a Commit tj,L, s
command to F (C) during execution of the SrcCommit command; note that if the committer
did not send such a command, the honest receiver would abort at this stage, so I would abort
as well). If, for some 1 ≤ i ≤ k, the committer sent a Commit ti,E , [tj,L; tj,R] command and
the committed value corresponding to tj,R is i (i.e., this is a valid linked commitment), I sends
a LinkedCopy r, r′, i command to F (C&C). If this is not the case, I sends a FakeCopy r, r′, s
command to F (C&C).

Open If the committer is corrupt and sent a message of the form (Opening, r′) to the simulated honest
receiver, I simulates the receiver until the end of the command execution. Note that if the receiver
did not abort, I must have previously sent a LinkedCopy r, r′, i or FakeCopy r, r′, s command to
F (C&C). I then sends an Open r′ command to F (C&C).

ProveCopy If the committer is corrupt and sent a message of the form (Proving copy, r′, r, i) to the
simulated honest receiver, I simulates the receiver until the end of the command execution. If the
receiver did not abort, the committer must have sent a Commit ti,E , [tj,L; tj,R] command for some j
in the SrcCommit phase, and the committed value corresponding to tj,R must be i. In this case, I
would have sent a LinkedCopy r, r′, i command in the execution of the corresponding Copy command.
I sends ProveCopy r′ to F (C&C).

4.7.3 Indistinguishability of Views

The final step of the proof of Theorem 4.6 is to show that for any environment machine Z, the view of a
protocol execution in the ideal world with the simulator I is indistinguishable from the view of the protocol
execution in the real world with real adversary A.

In the real world, Z’s view consists of the committer’s inputs (which Z chooses), the receiver’s output,
and the views of corrupted parties (these include the parties’ random coins). In the ideal world, Z’s view
consists of the committer’s inputs, the receiver’s output and the simulated views of the corrupted parties.
The simulated view of a corrupted party consists of I’s provisional view for the party at the moment it was

104 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

corrupted (after the final rewriting of the provisional view using the information I learns by corrupting the
corresponding ideal party) and the messages received from the simulated honest party after it was corrupted
(once both parties are corrupted, any subsequent messages sent are determined entirely by Z, hence they
are a deterministic function of Z’s view up to that point).

We claim the views are identically distributed. By examining the simulation, it is easy to verify that
the simulated receiver’s output is always consistent with its output in the ideal world. Note that the only
randomness in the protocol is the random permutations πr chosen by the committer when executing the
SrcCommit command. Thus, to show the views are identically distributed, it remains to show that the
random permutations πr are identically distributed.

When the committer is corrupt during execution of a SrcCommit command, the permutation is chosen
by A in both the real and ideal worlds (hence, it is identically distributed in both). When the committer
is honest, it chooses πr uniformly at random in the real world. In the ideal world, I also initializes the
provisional view by choosing πr uniformly at random. I may later be forced to rewrite the provisional
view and change the value of πr. However, we can think of this as choosing a permutation in the following
way: adversarially pick a set of indices i1, . . . , ik (these correspond to the indices for which a LinkedCopy
command will be sent). Sequentially, for 1 ≤ j ≤ k, I chooses a uniformly random value for πr(ij) (this
corresponds to I revealing the choice in a ProveCopy command). I then chooses the rest of the values
for πr uniformly at random (from the remaining possibilities). The resulting permutation πr is uniformly
distributed. This completes the proof of Theorem 4.6.

4.8 Discussion

Robustness of the Voting Scheme. The robustness of a voting scheme is its ability to recover from attacks
without requiring the election to be canceled. Because the DRE is the sole tallying authority, a corrupt
DRE can clearly disrupt the elections (e.g., by failing to output the tally). The UC proof shows that voters
cannot disrupt the elections just by interacting with the DRE (the only thing a voter can do in the ideal
model is either vote or abstain). However, our model does not prevent false accusations against the DRE.
For example, a corrupt voter that is able to fake a receipt can argue that the DRE failed to publish it on
the bulletin board. Using special paper or ink for the receipts may help [23], but preventing this and similar
attacks remains an open problem. A mitigating factor is that, in the event of such an attack, it will be
immediately evident that something is wrong (although it might not be clear who is at fault). Moreover,
the perpetrator of such an attack cannot do so anonymously, as both the accusation and the identity of the
accuser are public.

Traditional Paper Trail as Backup. Many critics of non-cryptographic DRE systems are pushing for a “voter
verified paper-trail”: requiring the DRE to print a plaintext ballot that the voter can inspect, which is then
placed in a real ballot box. In a non-cryptographic system, the paper trail can help verify that a DRE is
behaving honestly, and act as a recovery mechanism when it is not. In our system, a paper trail can be
used for the recovery property alone: if the DRE is misbehaving, our protocol ensures it will be detected
with high probability (without requiring random audits of the paper trail). In that case, we can perform a
recount using the paper ballots.

Splitting the Vote. Our scheme suffers a large drawback compared to many of the published universally-
verifiable schemes: we do not know how to distribute the vote between multiple authorities. In our protocol,
the DRE acts as the only tallying authority. Thus, a corrupt DRE can reveal the voters’ ballots. This is
also the case with Chaum and Neff’s schemes, however (as well as traditional DRE schemes in use today).
In a subsequent work [56], we construct a voting scheme that can split the ballot between two authorities.
However, this scheme can no longer be based on general commitment, as it requires the commitment to
have specific homomorphic properties. Combining the good properties from both schemes remains an open
problem.

Randomness and Covert channels. One problem that also plagues Neff’s scheme, and possibly Chaum’s [48],
is that a corrupt DRE can convey information to an adversary using subliminal channels. In this case, an
adversary only needs access to the bulletin board in order to learn all the voters choices. The source of the

4.8. DISCUSSION 105

problem is that the DRE uses a lot of randomness (e.g., the masking factors for the commitments and the
random permutations in the final tally phase).

In our scheme’s instantiation based on Pedersen commitments, we have a partial solution to this problem.
It requires the output of the DRE to be sent through a series of “filters” before reaching the printer or bulletin
board. The idea is that for each Pedersen commitment of the form x = hagr received by a filter, it will
choose a random masking factor s, and output xgs. If the DRE opens x by sending (a, r), the filter will
send instead (a, r + s). In a similar way the filter can mask the permutations used in the final-tally phase
by choosing its own random permutations and composing them. This only requires one-way communication
between the filters (i.e., each filter receives data from the filter before it in the series, and sends data only
to the filter after it in the series). Note that the filters do not need to know the value of the commitments
or the original permutations in order to perform its operation. If the DRE is honest, the filter receives no
information and so cannot covertly send any. If the filter is honest, any randomness sent by the DRE is
masked, so no information embedded in that randomness can leak. By using a series of filters, each from a
different trustee, we can ensure that the DRE does not utilize covert channels (as long as at least one of the
filters is honest). This solution requires special homomorphic properties from the underlying commitment
scheme. Finding a general solution to this problem is an interesting open problem.

An even stronger adversary may be able to both coerce voters and maliciously program the DRE. Our
protocol is vulnerable in this case. For example, a coercer can require a voter to use a special challenge,
which is recognized by the DRE (a coercer can verify that the voter used the required challenge, since it
appears on the public bulletin board). Once it knows a voter is coerced, the DRE can change the vote as it
wishes (since the coerced voter will not be able to complain). Possibly mitigating the severity of this attack
is the fact that, in order to significantly influence the outcome of an election, the adversary must coerce
many voters. This makes it much harder to keep the corruption secret.

Separate Tallying. Our scheme requires the tally to be performed separately for each DRE. This reveals ad-
ditional information about voter’s choices (in many real elections this information is also available, however).
An open problem is to allow a complete tally without sacrificing any of the other properties of our scheme
(such as receipt-freeness and everlasting privacy).

106 CHAPTER 4. RECEIPT-FREE VERIFIABLE VOTING WITH EVERLASTING PRIVACY

Chapter 5

Split-Ballot Voting: Everlasting
Privacy With Distributed Trust

5.1 Introduction

Recent years have seen increased interest in voting systems, with a focus on improving their integrity and
trustworthiness. This focus has given an impetus to cryptographic research into voting protocols. Embracing
cryptography allows us to achieve high levels of verifiability, and hence trustworthiness (every voter can
check that her vote was counted correctly), without sacrificing the basic requirements of ballot secrecy and
resistance to coercion.

A “perfect” voting protocol must satisfy a long list of requirements. Among the most important are:

Accuracy The final tally must reflect the voters’ wishes.

Privacy A voter’s vote must not be revealed to other parties.

Receipt-Freeness A voter should not be able to prove for whom she voted (this is important in order to
prevent vote-buying and coercion).

Universal Verifiability Voters should be able to verify that their own votes were “cast as intended”, and
any interested party should be able to verify that all the votes were “counted as cast”.

Surprisingly, all four of these seemingly contradictory properties can be satisfied simultaneously using cryp-
tographic techniques. Unfortunately, applying cryptographic techniques introduces new problems. One of
these is that cryptographic protocols are often based on computational assumptions (e.g., the infeasibility
of solving a particular problem). Some computational assumptions, however, may have a built-in time limit
(e.g., Adi Shamir estimated that all existing public-key systems, with key-lengths in use today, will remain
secure for less than thirty years [71]).

A voting protocol is said to provide information-theoretic privacy if a computationally unbounded ad-
versary does not gain any information about individual votes (apart from the final tally). If the privacy
of the votes depends on computational assumptions, we say the protocol provides computational privacy.
Note that to coerce a voter, it is enough that the voter believe there is a good chance of her privacy being
violated, whether or not it is actually the case (so even if Shamir’s estimate is unduly pessimistic, the fact
that such an estimate was made by an expert may be enough to allow voter coercion). Therefore, protocols
that provide computational privacy may not be proof against coercion: the voter may fear that her vote will
become public some time in the future.

While integrity that depends on computational assumptions only requires the assumptions to hold during
the election, privacy that depends on computational assumptions requires them to hold forever. To borrow a
term from Aumann, Ding and Rabin [5], we can say that information-theoretic privacy is everlasting privacy.

A second problem that cryptographic voting protocols must consider is that most cryptographic tech-
niques require complex computations that unaided humans are unable to perform. However, voters may

107

108 CHAPTER 5. SPLIT-BALLOT VOTING

not trust voting computers to do these calculations for them. This mistrust is quite reasonable, because
there is no way for them to tell if a computer is actually doing what it is supposed to be doing (as a trivial
example consider a voting program that lets a voter choose a candidate, and then claims to cast a vote for
that candidate; it could just as easily be casting a vote for a different candidate).

Finally, a problem that is applicable to all voting protocols is the problem of concentrating trust. We
would like to construct protocols that don’t have a “single point of failure” with respect to their security
guarantees. Many protocols involve a “voting authority”. In some protocols, this authority is a single-point
of failure with respect to privacy (or, in extreme cases, integrity). Protocols that require the voter to input
their votes to a computer automatically have a single point of failure: the computer is a single entity that
“knows” the vote. This is not an idle concern: many ways exist for a corrupt computer to undetectably output
information to an outside party (in some cases, the protocol itself provides such “subliminal channels”).

5.1.1 Our Contributions

In this paper we introduce the first universally-verifiable voting protocol with everlasting privacy that can
be performed by unaided humans and distributes trust across more than one voting authority. This protocol
has reasonable complexity (O(m) exponentiations per voter, where m is the number of candidates) and is
efficient enough to be used in practice.

We formally prove our protocol is secure in the Universal Composability (UC) framework, which provides
very strong notions of security. Loosely speaking, we show that running our protocol is as secure as running
the election using an absolutely trustworthy third party (the “ideal functionality”), to whom all the voters
secretly communicate their choices, and who then announces the final tally (a formal definition of this
functionality appears in Section 5.4).

Surprisingly, we can attain this level of security even though we base the voting protocol on commitment
and encryption schemes that are not, themselves, universally composable (we propose using a modification
of the Pedersen commitment scheme together with Paillier encryption; see Appendix 5.A for details).

As part of the formal proof of security, we can specify precisely what assumptions we make when we
claim the protocol is secure (this is not the case for most existing voting protocols, that lack formal proofs
completely).

In addition, we formally prove that our protocol is receipt-free (voters cannot prove for whom they voted,
even if they want to), using a simulation-based definition of receipt-freeness previously introduced by the
authors [55].

Our insistence on rigorous proofs of correctness is not just “formalism for the sake of formalism”. We
believe that formal proofs of security provide several very significant practical advantages. First, a precon-
dition for proving security is providing a formal definition of what we are trying to prove. This definition
is useful in itself: it gives us a better understanding of what our protocol achieves, where it can be used
and what its failure modes are. This is especially evident for definitions in simulation-based models (such as
universal composability), since the definition of an ideal functionality is usually very intuitive.

Secondly, even fairly simple protocols may have hard to find weaknesses. Without a formal proof, we
can never be certain that we have considered all possible avenues of attack. A formal proof lists a small
number of assumptions that imply the security of the protocol. This means that to verify that a particular
implementation is secure, we can concentrate on checking only these assumptions: as long as they are all
satisfied, we can be certain an attack will not come from an unexpected direction. To illustrate this point,
we demonstrate a subtle attack against the receipt-freeness of the Punchscan voting system [22] (see Section
5.2.4).

Finally, even though formal proofs are not “foolproof” — our definitions may not capture the “correct”
notion of security, or the proof itself may contain errors — they give us a basis and a common language for
meaningful discussions about protocols’ security.

5.1.2 Related Work

Voting Protocols. Chaum proposed the first published electronic voting scheme in 1981 [19]. Many additional
protocols were suggested since Chaum’s. Among the more notable are [40, 26, 7, 27, 28, 45].

5.2. INFORMAL OVERVIEW OF THE SPLIT-BALLOT PROTOCOL 109

Most of the proposed voting schemes satisfy the accuracy, privacy and universal-verifiability properties.
However, only a small fraction satisfy, in addition, the property of of receipt-freeness. Benaloh and Tuinstra
[7] were the first to define this concept, and to give a protocol that achieves it (it turned out that their full
protocol was not, in fact, receipt free, although their single-authority version was [45]). To satisfy receipt-
freeness, Benaloh and Tuinstra also required a “voting booth”: physically untappable channels between the
voting authority and the voter.

Human Considerations. Almost all the existing protocols require complex computation on the part of the
voter (infeasible for an unaided human). Thus, they require the voter to trust that the computer casting
the ballot on her behalf is accurately reflecting her intentions. Chaum [21], and later Neff [62], proposed
universally-verifiable receipt-free voting schemes that overcome this problem. Reynolds [67] proposed another
protocol similar to Neff’s.

All three schemes are based in the “traditional” setting, in which voters cast their ballots in the privacy
of a voting booth. Instead of a ballot box, the booth contains a “Direct Recording Electronic” (DRE) voting
machine. The voter communicates her choice to the DRE (e.g., using a touch-screen or keyboard). The DRE
encrypts her vote and posts the encrypted ballot on a public bulletin board. It then proves to the voter, in
the privacy of the voting booth, that the encrypted ballot is truly an encryption of her intended vote.

Chaum’s original protocol used Visual Cryptography [61] to enable the human voter to read a complete
(two-part) ballot that was later separated into two encrypted parts, and so his scheme required special
printers and transparencies. Bryans and Ryan showed how to simplify this part of the protocol to use a
standard printer [13, 68]. A newer idea of Chaum’s is the Punchscan voting system [22], which we describe
in more detail in Section 5.2.4.

Previously, the authors proposed a voting protocol, based on statistically-hiding commitments, that com-
bines everlasting security and a human-centric interface [55]. This protocol requires a DRE, and inherently
makes use of the fact that there is a single authority (the DRE plays the part of the voting authority).

Adida and Rivest [1] suggest the “Scratch&Vote” system, which makes use of scratch-off cards to provide
receipt-freeness and “instant” verifiability (at the polling place). Their scheme publishes encryptions of the
votes, and is therefore only computationally private.

Our new scheme follows the trend of basing protocols on physical assumptions in the traditional voting-
booth setting. Unlike most of the previous schemes we also provide a rigorous proof that our scheme actually
meets its security goals.

5.2 Informal Overview of the Split-Ballot Protocol

Our voting scheme uses two independent voting authorities that are responsible for preparing the paper
ballots, counting the votes and proving that the announced tally is correct.

If both authorities are honest, the election is guaranteed to be accurate, information-theoretically private
and receipt-free. If at least one of the authorities is honest, the election is guaranteed to be accurate and
private (but now has only computational privacy, and may no longer be receipt-free). If both authorities are
corrupt, the tally is still guaranteed to be accurate, but privacy is no longer guaranteed.

An election consists of four phases:

1. Setup: In this stage the keys for the commitment and encryption schemes are set up and ballots are
prepared.

2. Voting: Voters cast their ballots. This stage is designed to be performed using pencil and paper,
although computers may be used to improve the user experience.

A vote consists of four ballots, two from each voting authority. The voter selects one ballot from each
authority for auditing (they will not be used for voting). The remaining two ballots are used to vote.
The voter’s choices on both ballots, taken together, uniquely define the vote. A partial copy of each
ballot is retained by the voter as a “verification receipt” (a more detailed description appears in Section
5.2.2).

110 CHAPTER 5. SPLIT-BALLOT VOTING

Figure 5.2.1: Illustrated Sample Vote

5.2. INFORMAL OVERVIEW OF THE SPLIT-BALLOT PROTOCOL 111

3. Tally: The two authorities publish all of the ballots. Voters may verify that their receipts appear
correctly in the published tally. The two authorities then cooperate to tally the votes. The final result
is a public proof that the tally is correct.

4. Universal Verification: In this phase any interested party can download the contents of the public
bulletin board and verify that the authorities correctly tallied the votes.

5.2.1 Shuffling Commitments

One of the main contributions of this paper is achieving “everlasting privacy” with more than one voting
authority. At first glance, this seems paradoxical: if a voting authority publishes any information at all
about the votes (even encrypted), the scheme can no longer be information-theoretically private. On the
other hand, without publishing information about the votes, how can two voting authorities combine their
information?

We overcome this apparent contradiction by introducing the “oblivious commitment shuffle”: a way for
independent authorities to verifiably shuffle perfectly-hiding commitments (which will give us information-
theoretic privacy).

The problem of verifiably shuffling a vector of encrypted values has been well studied. The most commonly
used scheme involves multiple authorities who successively shuffle the encrypted vector, each using a secret
permutation, and then prove that the resulting vector of encrypted values is valid. Finally, the authorities
cooperate to decrypt the ultimate output of the chain. If even one of the authorities is honest (and keeps its
permutation secret), the remaining authorities gain no information beyond the final tally.

This type of scheme breaks down when we try to apply it to perfectly-hiding commitments rather than
encryptions. The problem is that in a perfectly-hiding commitment, the committed value cannot be deter-
mined from the commitment itself. Thus, the standard method of opening the commitments after shuffling
cannot be used.

The way we bypass the problem is to allow the authorities to communicate privately using a homomorphic
encryption scheme. This private communication is not perfectly hiding (in fact, the encryptions are perfectly
binding commitments), but the voting scheme itself can remain information-theoretically private because the
encryptions are never published. The trick is to encrypt separately both the message and the randomness used
in the commitments. We use a homomorphic encryption scheme over the same group as the corresponding
commitment. When the first authority shuffles the commitments, it simultaneously shuffles the encryptions
(which were generated by the other authority). By opening the shuffled encryptions, the second authority
learns the contents and randomness of the shuffled commitments (without learning anything about their
original order). The second authority can now perform a traditional commitment shuffle.

5.2.2 Human Capability

Our protocol makes two questionable assumptions about human voters: that they can randomly select a bit
(to determine which ballots to audit), and that they perform modular addition (to split their vote between
the two authorities). The first is a fairly standard assumption (in fact, we do not require uniform randomness,
only high min-entropy). The second seems highly suspect. However, it is possible to implement the voting
protocol so that the modular addition occurs implicitly as a result of a more “natural” action for humans.

We propose an interface that borrows heavily from Punchscan’s in order to make the voting task more
intuitive. The basic idea is to form the ballot from three separate pages. The first page contains the list of
candidates, along with a letter or symbol denoting each (this letter can be fixed before the election). The
second page contains a table of letters: each column of the table is a permutation of the candidates. The
third page is the one used to record the vote; it contains a scannable bubble for each row of the table in the
middle page.

Holes are cut in the top page and middle pages, so that when all three are stacked a single random
column of the table on the middle page is visible, as are the bubbles on the bottom page. The voter selects
a candidate by marking the bubble corresponding to her choice. Since one authority randomly selects the
table (on the middle page) and the other authority randomly selects which of its columns is used (determined

112 CHAPTER 5. SPLIT-BALLOT VOTING

by the position of the hole in the top page), the position of the bubble marked by the voter does not give
information about her choice unless both the middle and top pages are also known.

5.2.3 Vote Casting Example

To help clarify the voting process, we give a concrete example, describing a typical voter’s view of an election
(this view is illustrated in Figure 5.2.1). The election is for the office of president, and also includes a poll
on “Proposition 123”. The presidential candidates are Washington, Adams, Jefferson and Madison.

Sarah, the voter, enters the polling place and receives two pairs of ballot pages in sealed envelopes, each
pair consisting of a “Top” ballot page and a “Middle” ballot page (we can think of the two voting authorities
as the “Top” authority and the “Middle” authority). Each envelope is marked either “Top” or “Middle”,
and has a printed “verification code” (this code is actually a commitment to the public section of the ballot,
as described in Section 5.5.1). Sarah first chooses a pair of ballot pages to audit. This pair is immediately
opened, and the “red” (dark) ballot pages inside the envelopes are scanned, as are the verification codes on
the envelopes. Sarah is allowed to keep all parts of the audited ballots.

The election officials give Sarah a green (light) “bottom page” that is printed with the verification codes
from both the remaining (unopened) envelopes (alternatively, the verification codes could be printed on a
sticker that is affixed to the green page before handing it to Sarah). She enters the polling booth with the
green page and both unopened envelopes.

Inside the polling booth, Sarah opens the envelopes and takes out the red pages. The middle page is
printed with a table of letters representing the candidates (the letters were chosen in advance to be the first
letter of the candidate’s surname). The order of the letters in the table is chosen randomly by the Middle
authority (different ballot pages may have different orders). Similarly, the order of the “Yes” and “No”
responses to Proposition 123 is random. The top page has a hole cut out that reveals a single column of the
table — which column is randomly chosen by the Top authority. Sarah stacks all three pages (the top ballot
page, the middle ballot part, and the green “bottom page”). Taken together, these pages form a complete
ballot. Sarah wants to vote for Adams and to vote Yes on Proposition 123. She finds her candidate’s letter
on the ballot, and marks the corresponding bubble (the marks themselves are made on the green, bottom
page that can be seen through the holes in the middle and top pages). She also finds the “Yes” choice for
Proposition 123, and marks its corresponding bubble.

Sarah then separates the pages. She shreds the red pages that were inside the envelopes. To prevent
vote-selling and coercion attacks, Sarah must be forced to destroy the red pages (e.g., perhaps the output of
the shredder is visible to election officials outside the voting booth).

Sarah exits the voting booth holding only the marked, green page. This sheet of paper is then scanned
(with the help of the election officials). The scanner can give immediate output so Sarah can verify that she
filled the bubbles correctly, and that the scanner correctly identified her marks. Note that Sarah doesn’t
have to trust the scanner (or its software) in any way: The green page and the audited ballots will be kept
by Sarah as receipts which she can use to prove that her vote was not correctly tabulated (if this does occur).
At home Sarah will make sure that the verification code printed on the pages, together with the positions
of the marked bubbles, are published on the bulletin board by the voting authorities. Alternatively, she can
hand the receipts over to a helper organization that will perform the verification on her behalf.

5.2.4 The Importance of Rigorous Proofs of Security for Voting Protocols

To demonstrate why formal proofs of security are important, we describe a vote-buying attack against a
previous version of the Punchscan voting protocol. The purpose of this section is not to disparage Punchscan;
on the contrary, we use Punchscan as an example because it is one of the simplest protocols to understand
and has been used in practice. A closer look at other voting protocols may reveal similar problems. Our aim
is to encourage the use of formal security analysis to detect (and prevent) such vulnerabilities.

We very briefly describe the voter’s view of the Punchscan protocol, using as an example an election race
between Alice and Bob. The ballot consists of two pages, one on top of the other. The top page contains the
candidates’ names, and assigns each a random letter (either A or B). There are two holes in the top page
through which the bottom page can be seen. On the bottom page, the letters A and B appear in a random

5.2. INFORMAL OVERVIEW OF THE SPLIT-BALLOT PROTOCOL 113

order (so that one letter can be seen through each hole in the top page). Thus, the voter is presented with
one of the four possible ballot configurations (shown in Figure 5.2.2).

Figure 5.2.2: Punchscan Ballot Configurations

To vote, the voter marks the letter corresponding to her candidate using a wide marker: this marks both
the top and bottom pages simultaneously. The two pages are then separated. The voter chooses one of the
pages to scan (and keep as a receipt), while the other is shredded (these steps are shown in Figure 5.2.3).

Figure 5.2.3: Punchscan Ballot Figure 5.2.4: “Bad” Receipts

Each pair of pages has a short id, which a voting authority can use to determine what was printed on
each of the pages (this allows the authority to determine the voter’s vote even though it only receives a
single page). For someone who does not know the contents of the shredded page, the receipt does not give
any information about the voter’s choice.

Giving each voter a receipt for her vote is extremely problematic in traditional voting systems, since
the receipt can be used to coerce voters or to buy votes. Punchscan attempts to prevent vote-buying by
making sure that the receipt does not contain any information about the voter’s choice. At first glance, this
idea seems to work: if an adversary just asks a voter to vote for a particular candidate (by following the
Punchscan protocol honestly), there is no way the adversary can tell, just by looking at the receipt, whether
the voter followed his instructions or not.

Below, we show that for a slightly more sophisticated adversary, a vote-buying attack is possible against
Punchscan.

A Vote Buying Attack. To demonstrate the attack, we continue to use the Alice/Bob election example.
Suppose the coercer wants to bias the vote towards Alice. In this case, he publishes that he will pay for any
receipt except those shown in Figure 5.2.4 (i.e., everything except a “B,A” bottom page on which “A” was
marked, and a “B,A” top page on which the right hole was marked).

This attack will force one fourth of the voters to vote for Alice in order to get paid. To see why, consider
the four possible ballot configurations (in Figure 5.2.2). Since the coercer will accept any marking on an
“A,B” top page or an “A,B” bottom page, in three of the four configurations the voter can vote as she
wishes. However, if both the top and the bottom pages are “B,A” pages (this occurs in one fourth of the
cases), the voter is forced to vote for Alice if she wants to return an acceptable receipt.

Although three-fourths of the voters can vote for any candidate, this attack is still entirely practical.
When a race is close, only a small number of votes must be changed to tip the result in one direction.
Compared to the “worst possible” system in which an adversary can buy votes directly, Punchscan requires
the attacker to spend only four times as much to buy the same number of votes. Since the receipts are
published, this attack can be performed remotely (e.g., over the internet), making it much worse than a
“standard” vote-buying attack (such as chain-voting) that must be performed in person.

114 CHAPTER 5. SPLIT-BALLOT VOTING

We note that the current version of Punchscan (as described in [65]) instructs the voter to commit to
the layer she will take before entering the voting booth. This requirement does suffice to foil the attack
described above. Similar attacks, however, may still be possible. The point we hope to make is that, lacking
a formal proof of security, it is very hard to be certain.

5.3 Underlying Assumptions

One of the important advantages of formally analyzing voting protocols is that we can state the specific
assumptions under which our security guarantees hold. Our protocol uses a combination of physical and
cryptographic assumptions. Below, we define the assumptions and give a brief justification for each.

5.3.1 Physical Assumptions

Undeniable Ballots. To allow voters to complain convincingly about invalid ballots, they must be undeniable:
a voter should be able to prove that the ballot was created by the voting authority. This type of requirement
is standard for many physical objects: money, lottery-tickets, etc.

Forced Private Erasure. In order to preserve the receipt-freeness of the protocol, we require voters to
physically erase information from the ballots they used. The erasure assumption is made by a number of
existing voting schemes that require the voter to choose some part of the ballot to securely discard (e.g.,
Punchscan [22], Scratch&Vote [1]). In practice, this can be done by shredding, by chemical solvent, etc.

At first glance, it might appear that simply spoiling a ballot that was not correctly erased is sufficient.
However, this is not the case; the voter must be forced to erase the designated content. Otherwise, a coercer
can mount a vote-buying attack similar to the one described in section 5.2.4, where some voters are told to
invalidate their ballots by refusing to erase them (and showing the complete ballot to the coercer).

Since only the voter should be able to see the contents of the erased part of the ballot, finding a good
mechanism to enforce erasure may be difficult (e.g., handing it to an official to shred won’t work). However,
a large-scale attack that relies on circumventing this assumption may be detected by counting the number
of spoiled ballots.

Voting Booth. In order to preserve privacy and receipt-freeness, the voter must be able to perform some
actions privately. The actions the voter performs in the voting booth are opening sealed ballots, reading
their contents and erasing part of the ballot.

Untappable Channels. We use untappable channels in two different ways. First, in order to guarantee
everlasting privacy and receipt-freeness, ballots must be delivered from the voting authorities to the voter
without any information about their contents leaking to a third party. The amount of data each voter
must receive is small, however, and the untappable channel may be implmented, for example, using sealed
envelopes.

Second, for the same reason, communication between the two voting authorities is also assumed to take
place using untappable private channels. The amount of information exchanged is larger in this case, but
this is a fairly reasonable assumption: the voting authorities can be physically close and connected by direct
physical channels.

The untappable channel can also be replaced by encryption using a one-time pad (since this is also
information-theoretically private). However, to simplify the proof we consider only an ideal untappable
channel in this paper.

Public Bulletin Board. The public bulletin board is a common assumption in universally-verifiable voting
protocols. This is usually modeled as a broadcast channel, or as append-only storage with read-access for all
parties. A possible implementation is a web-site that is constantly monitored by multiple verifiers to ensure
that nothing is erased or modified.

Random Beacon. The random beacon, originally introduced by Rabin [66], is a source of independently
distributed, uniformly random strings. The main assumption about the beacon is that it is unpredictable.

5.3. UNDERLYING ASSUMPTIONS 115

In practice, the beacon can be implemented in many ways, such as by some physical source believed to be
unpredictable (e.g., cosmic radiation, weather, etc.), or by a distributed computation with multiple verifiers.

We use the beacon for choosing the public-key of our commitment scheme and to replace the verifier in
zero-knowledge proofs. For the zero-knowledge proofs, we can replace the beacon assumption by a random
oracle (this is the Fiat-Shamir heuristic): the entire protocol transcript so far is taken as the index in the
random oracle that is used as the next bit to be sent by the beacon.

5.3.2 Cryptographic Assumptions

Our protocol is based on two cryptographic primitives: perfectly-hiding homomorphic commitment and
homomorphic encryption. The homomorphic commitment requires some special properties.

Homomorphic Commitment. A homomorphic commitment scheme consists of a tuple of algorithms: K,
C, PK , and VK . K : {0, 1}` × {0, 1}` 7→ K accepts a public random bit-string and a private auxiliary and
generates a commitment public key cpk ∈ K. C is the commitment function, parametrized by the public
key, mapping from a message group (M,+) and a randomizer group (R,+) to the group of commitments
(C, ·).

PK and VK are a zero-knowledge “prover” and “verifier” for the key generation: these are both interactive
machines. The prover receives the same input as the key generator, while the verifier receives only the public
random string and the public key. To allow the verification to be performed publicly (using a random
beacon), we require that all of the messages sent by VK to PK are uniformly distributed random strings.

For any probabilistic polynomial time turing machines (PPTs) K∗, P ∗K (corresponding to an adversarial
key-generating algorithm and prover), when cpk ← K∗(rK), rK ∈R {0, 1}` is chosen uniformly at random
then, with all but negligible probability (the probability is over the choice of rK and the random coins of
K∗, P ∗K and VK), either the output of VK(rK , cpk) when interacting with P ∗K is 0 (i.e., the verification of the
public-key fails) or the following properties must hold:

1. Perfectly Hiding: For anym1,m2 ∈M, the random variables C(m1, r) and C(m2, r) must be identically
distributed when r is taken uniformly at random from R. (Note that we can replace this property with
statistically hiding commitment, but for simplicity of the proof we require the stronger notion).

2. Computationally Binding: For any PPT A (with access to the private coins of K∗), the probability
that A(cpk) can output (m1, r1) 6= (m2, r2) ∈ M×R such that Ccpk(m1, r1) = Ccpk(m2, r2) must be
negligible. The probability is over the random coins of K∗, A and rK .

3. Homomorphic in both M and R: for all (m1, r1), (m2, r2) ∈ M×R, and all but a negligible fraction
of keys, C(m1, r1) · C(m2, r2) = C(m1 +m2, r1 + r2).

4. Symmetry: The tuple (K,C ′), where C ′(m, r) .= C(r,m) should also be a commitment scheme satis-
fying the hiding and binding properties (i.e., it should be possible to use C(m, r) as a commitment to
r).

Finally we also require the interaction between PK and VK to be zero-knowledge: there should exist an
efficient simulator that, for every rK and K(rk, aux), produces a simulated transcript of the interaction that
is computationally-indistinguishable from a real one — even though it is not given aux (the secret auxiliary
input to K).

Simulated Equivocability. For achieving UC security, we require the commitment scheme to have two addi-
tional algorithms: K ′ : {0, 1}`

′
7→ {0, 1}`, C ′ : {0, 1}`

′
×C×M 7→ R, such that the output of K ′ is uniformly

random. The scheme must satisfy an additional property when we replace rK with K ′(l), where l ∈R {0, 1}`:

5. Perfect Equivocability: For every m ∈M and c ∈ C, CK∗(K′(l))(m,C ′(l, c,m)) = c.

That is, it is possible to generate a public-key that is identical to a normal public key, but with additional
side information that can be used to efficiently open every commitment to any value

Homomorphic Public-Key Encryption. The second cryptographic building block we use is a homomorphic
public-key encryption scheme. We actually need two encryption schemes, one whose message space is M

116 CHAPTER 5. SPLIT-BALLOT VOTING

and the other whose message space is R (where M and R are as defined for the commitment scheme).
The schemes are specified by the algorithm triplets (KG(M), E(M), D(M)) and (KG(R), E(R), D(R)), where
KG is the key-generation algorithm, E(X) : X × T 7→ E(X) the encryption algorithm and D(X) : E(X) 7→ X
the decryption algorithm. We require the encryption schemes to be semantically secure and homomorphic
in their message spaces: for every x1, x1 ∈ X and any r1, r2 ∈ T , there must exist r′ ∈ T such that
E(X)(x1, r1) · E(X)(x2, r2) = E(X)(x1 + x2, r

′). .
We do not require the encryption scheme to be homomorphic in its randomness, but we do require, for

every x1, r1, x2, that r′ is uniformly distributed in T when r2 is chosen uniformly.
To reduce clutter, when it is obvious from context we omit the key parameter for the commitment scheme

(e.g., we write C(m, r) instead of Ccpk(m, r)), and the randomness and superscript for the encryption schemes
(e.g., we write E(m) to describe an encryption of m).

Below, we use only the abstract properties of the encryption and commitment schemes. For an actual
implementation, we propose using the Paillier encryption scheme (where messages are in Zn for a composite
n, together with a modified version of Pedersen Commitment (where both messages and randomness are
also in Zn). More details can be found in Appendix 5.A.

5.4 Threat Model and Security

We define and prove the security properties of our protocol using a simulation paradigm. The protocol’s
functionality is defined by describing how it would work in an “ideal world”, in which there exists a completely
trusted third party. Informally, our security claim is that any attack an adversary can perform on the protocol
in the real world can be transformed into an attack on the functionality in the ideal world. This approach has
the advantage of allowing us to gain a better intuitive understanding of the protocol’s security guarantees,
when compared to the game-based or property-based approach for defining security.

The basic functionality is defined and proved in Canetti’s Universal Composability framework [16]. This
provides extremely strong guarantees of security, including security under arbitrary composition with other
protocols. The ideal voting functionality, described below, explicitly specifies what abilities the adversary
gains by corrupting the different parties involved.

We also guarantee receipt-freeness, a property that is not captured by the standard UC definitions, using
a similar simulation-based definition (see Appendix 5.C).

5.4.1 Ideal Voting Functionality

The voting functionality defines a number of different parties: n voters, two voting authorities A1 and A2,
a verifier and an adversary. The voting authorities’ only action is to specify the end of the voting phase.
Also, there are some actions the adversary can perform only after corrupting one (or both) of the voting
authorities. The verifier is the only party with output. If the protocol terminates successfully, the verifier
outputs the tally, otherwise it outputs ⊥ (this corresponds to cheating being detected).

When one (or both) of the voting authorities are corrupt, we allow the adversary to change the final
tally, as long as the total number of votes changed is less than the security parameter k (we consider
2−k negligible).1 This is modeled by giving the tally privately to the adversary, and letting the adversary
announce an arbitrary tally using the Announce command (described below). If one of the authorities is
corrupt, we also allow the adversary to retroactively change the votes of corrupt voters, as a function of the
tally (if we were to use a universally-composable encryption scheme, rather than one that is just semantically
secure, we could do away with this requirement).

If neither of the voting authorities is corrupt, the adversary cannot cause the functionality to halt. The
formal specification for the voting functionality, F (V), follows:

Vote v, xv On receiving this command from voter v, the functionality stores the tuple (v, xv) in the vote
database S and outputs “v has voted” to the adversary. The functionality then ignores further messages
from voter v. The functionality will also accept this message from the adversary if v was previously

1This is a fairly common assumption in cryptographic voting protocols (appearing in [21, 13, 68, 22], among others).

5.4. THREAT MODEL AND SECURITY 117

corrupted (in this case an existing (v, xv) tuple can be replaced). If one of the authorities was corrupted
before the first Vote command was sent, the functionality will also accept this message from the
adversary after the Tally command has been received (to change the vote of voters that were corrupted
before the tally).

Vote v, ∗ This command signifies a forced random vote. It is accepted from the adversary only if voter v
is coerced or corrupted. In that case, the functionality chooses a new random value xv ∈R Zm, and
stores the tuple (v, xv) in the database.

Vote v,⊥ This command signifies a forced abstention. It is accepted from the adversary only if voter v is
coerced or corrupted. In that case, the functionality deletes the tuple (v, xv) from the database.

Tally On receiving this command from an authority, the functionality computes τi = | {(v, xv) ∈ S | xv = i} |
for all i ∈ Zm. If none of the voting authorities are corrupt, the functionality sends the tally τ0, . . . , τm−1

to the verifier and halts (this is a successful termination). Otherwise (if at least one of the voting
authorities is corrupt), it sends the tally, τ0, . . . , τm−1, to the adversary.

Announce τ ′0, . . . , τ
′
m−1 On receiving this command from the adversary, the functionality verifies that

the Tally command was previously received. It then computes d =
∑m−1
i=0 |τi − τ ′i| (if one of the

authorities is corrupt and the adversary changed corrupt voters’ choices after the Tally command was
received, the functionality recomputes τ0, . . . , τm−1 before computing d). If d < k (where k is the
security parameter) it outputs the tally τ ′0, . . . , τ

′
m−1 to the verifier and halts (this is considered a

successful termination).

Corrupt v On receiving this command from the adversary, the functionality sends xv to the adversary (if
there exists a tuple (v, xv) ∈ S).

Corrupt Aa On receiving this command from the adversary, the functionality marks the voting authority
Aa as corrupted.

RevealVotes On receiving this command from the adversary, the functionality verifies that both of the
voting authorities A1 and A2 are corrupt. If this is the case, it sends the vote database S to the
adversary.

Halt On receiving this command from the adversary, the functionality verifies that at least one of the voting
authorities is corrupt. If so, it outputs ⊥ to the verifier and halts.

Our main result is a protocol that realizes the ideal functionality F (V) in the universal composability
model. A formal statement of this is given in Theorem 5.1, with a proof in Section 5.6.

5.4.2 Receipt-Freeness

As previously discussed, in a voting protocol assuring privacy is not enough. In order to prevent vote-buying
and coercion, we must ensure receipt-freeness: a voter shouldn’t be able to prove how she voted even if
she wants to. We use the definition of receipt-freeness from [55], an extension of Canetti and Gennaro’s
incoercible computation [17]. This definition of receipt-freeness is also simulation based, in the spirit of our
other security definitions.

Parties all receive a fake input, in addition to their real one. A coerced player will use the fake input
to answer the adversary’s queries about the past view (before it was coerced). The adversary is not limited
to passive queries, however. Once a player is coerced, the adversary can give it an arbitrary strategy (i.e.
commands the player should follow instead of the real protocol interactions). We call coerced players that
actually follow the adversary’s commands “puppets”.

A receipt-free protocol, in addition to specifying what players should do if they are honest, must also
specify what players should do if they are coerced; we call this a “coercion-resistance strategy” The coercion-
resistance strategy is a generalization of the “faking algorithm” in Canetti and Gennaro’s definition —
the faking algorithm only supplies an answer to a single query (“what was the randomness used for the
protocol”), while the coercion-resistance strategy must tell the party how to react to any command given by
the adversary.

118 CHAPTER 5. SPLIT-BALLOT VOTING

Intuitively, a protocol is receipt-free if no adversary can distinguish between a party with real input x that
is a puppet and one that has a fake input x (but a different real input) and is running the coercion-resistance
strategy. At the same time, the computation’s output should not change when we replace coerced parties
running the coercion-resistance strategy with parties running the honest protocol (with their real inputs).
Note that these conditions must hold even when the coercion-resistance strategy is known to the adversary.

In our original definition [55], a protocol is considered receipt-free even if the adversary can force a party
to abstain. We weaken this definition slightly, and also allow the adversary to force a party to vote randomly.
The intuition is that a uniformly random vote has the same effect, in expectation, as simply abstaining2.
Our protocol is receipt-free under this definition (Theorem 5.2 gives a more precise statement of this fact).

Note that the intuition for why this is acceptable is not entirely correct: in some situations, the new
definition can be significantly weaker. For example, when voting is compulsory, “buying” a random vote
may be much cheaper than “buying” an abstention (the price would have to include the fine for not voting).
Another situation where forcing randomization may be more powerful than forcing an abstention is if the
margin of victory is important (such as in proportional elections). In many cases, however, the difference
is not considered substantial enough to matter; we note that Punchscan and Prêt à Voter, two of the most
widely-known universally-verifiable voting schemes, are also vulnerable to a forced randomization attack.

5.5 Split-Ballot Voting Protocol

In this section we give an abstract description of the split-ballot voting protocol (by abstract, we mean we that
we describe the logical operations performed by the parties without describing a physical implementation).
In the interest of clarity, we restrict ourselves to two voting authorities A1,A2, n voters and a single poll
question with answers in the group Zm. We assume the existence of a homomorphic commitment scheme
(K,C) (with the properties defined in Section 5.3.2) whose message space is a group (M,+), randomizer
space a group (R,+), and commitment space a group (C, ·). Our protocol requiresM to be cyclic and have
a large order: |M| ≥ 22k+2, and we assume m < 2k (k is the security parameter defined in Section 5.4.1).
Furthermore, we assume the existence of homomorphic encryption schemes with the corresponding message
spaces.

5.5.1 Setup

The initial setup involves:

1. Choosing the system parameters (these consist of the commitment scheme public key and the encryption
scheme public/private key pair). Authority A1 runs KG(M) and KG(R), producing (pk(M), sk(M)) and
(pk(R), sk(R)). A1 sends the public keys over the private channel to authority A2. It also runs K using
the output of the random beacon as the public random string, and the private coins used in running
KG(M) and KG(R) as the auxiliary. This produces the commitment public key, cpk. Authority A1

now runs PK using the random beacon in place of the verifier (this produces a public proof that the
commitment key was generated correctly).

2. Ballot preparation. Each voting authority prepares at least 2n ballot parts (the complete ballots are
a combination of one part from each authority). We identify a ballot part by the tuple ~w = (a, i, b) ∈
{1, 2}× [n]×{0, 1}, where Aa is the voting authority that generated the ballot part, i is the index of the
voter to whom it will be sent and b a ballot part serial number. Each ballot part has a “public” section
that is published and a “private” section that is shown only to the voter. The private section for ballot
part B~w is a random value t~w ∈R Zm. For ~w = (2, i, b) (i.e., ballot parts generated by authority A2),
the public section of B~w consists of a commitment to that value: c~w

.= C(t~w, r~w), where r~w ∈R R.
For ~w = (1, i, b) (ballot parts generated by A1), the public section contains a vector of commitments:
c~w,0, . . . , c~w,m−1, where c~w,j

.= C(t~w + j (mod m), r~w,j), and r~w,j ∈R R (i.e., the commitments are to
the numbers 0 through m− 1 shifted by the value t~w). The authorities publish the public parts of all
the ballots to the bulletin board.

2Note that the attack we describe in Section 5.2.4 is not equivalent to forcing a random vote: the coercer forces voters to
choose the desired candidate with higher probability than the competitor.

5.5. SPLIT-BALLOT VOTING PROTOCOL 119

5.5.2 Voting

The voter receives two ballot parts from each of the voting authorities, one set is used for voting, and the
other to audit the authorities. The private parts of the ballot are hidden under a tamper-evident seal (e.g.,
an opaque envelope). Denote the voter’s response to the poll question by xv ∈ Zm. Informally, the voter
uses a trivial secret sharing scheme to mask her vote: she splits it into two random shares whose sum is xv.
The second share is chosen ahead of time by A2, while the first is selected from the ballot part received from
A1 by choosing the corresponding commitment. A more formal description appears as Protocol 5.1.

Protocol 5.1 Ballot casting by voter v
1: Wait to receive ballots parts B~w, for all ~w ∈ {1, 2} × {v} × {0, 1} from the authorities.
2: Choose a random bit: bv ∈R {0, 1}
3: Open and publish ballot parts B(1,v,1−bv) and B(2,v,1−bv). {these will be used for auditing the voting

authorities}
4: Verify that the remaining ballot parts are still sealed, then enter the voting booth with them.
5: Open the ballot parts B(1,v,bv) snd B(2,v,bv).
6: Compute sv

.= xv − t(1,v,bv) − t(2,v,bv) (mod m). To reduce clutter, below we omit the subscripts bv and
sv, denoting c(1,v)

.= c(1,v,bv),sv , r(1,v)
.= r(1,v,bv),sv , c(2,v)

.= c(2,v,bv), r(2,v)
.= r(2,v,bv) and t(a,v)

.= t(a,v,bv).
{The computation can be perfomed implictly by the voting mechanism, e.g., the method described in
Section 5.2.2}.

7: Physically erase the private values t~w from all the received ballot parts. {This step is the “forced ballot
erasure”}

8: Leave the voting booth.
9: Publish sv {recall that c(1,v) and c(2,v) were already published by the authorities}.

Coercion-Resistance Strategy. We assume the adversary cannot observe the voter between steps 4 and
8 of the voting phase (i.e., while the voter is in the voting booth).

If the voter is coerced before step 4, the voter follows the adversary’s strategy precisely, but uses random
t(a,v) values instead of those revealed on the opened ballots. Because of the forced erasure, the adversary
will not be able to tell whether the voter used the correct values or not. By using random values, the end
result is that the voter votes randomly (coercing a voter to vote randomly is an attack we explicitly allow).

If the voter is coerced at step 4 or later (after entering the voting booth), she follows the regular voting
protocol in steps 4 through 7. Even if she is coerced before step 7, she lies to the adversary and pretends
the coercion occurred at step 7 (the adversary cannot tell which step in the protocol the voter is executing
while the voter is in the booth). In this case, the adversary cannot give the voter a voting strategy, except
one that will invalidate the ballot (since the voter has no more “legal” choices left). The voter must still
convince the adversary that her vote was for the “fake input” provided by the adversary rather than her
real input. To do this, she pretends the t(2,v) value she received was one that is consistent with the fake
input and her real sv. Using the example in Figure 5.2.1, if Sarah was trying to convince a coercer that
she actually voted for Jefferson (instead of Adams), she would claim that the upper ballot part had the
hole in the leftmost position (rather than the second position), so that her choice on the lower ballot part
corresponds to Jefferson.

Note that the adversary can force the voter to cast a random ballot, for example by telling her to always
fill the top bubble on the bottom page. However, forcing a random vote is something we explicitly do not
prevent.

5.5.3 Tally

The tally stage is performed by the voting authorities and does not require voter participation (for the
intuition behind it, see Section 5.2.1). Before the start of the tally stage, all authorities know, for every voter
v: sv, c(1,v) and c(2,v) (this was published on the public bulletin board). Each authority Aa also knows the
private values t(a,v) and r(a,v) (the voter’s choice is xv = sv + t(1,v) + t(2,v) (mod m)).

120 CHAPTER 5. SPLIT-BALLOT VOTING

Figure 5.5.1: Tally Phase 1

For all 1 ≤ v ≤ n, denote d3,v
.= c(1,v)c(2,v) = C(xv (mod m), r(1,v) + r(2,v)). The value d3,v is a

commitment to voter v’s choice, up to multiples of m; both the value and the randomness for the commitment
are shared among the two authorities (note that c(1,v) = c(1,v,bv),sv is a commitment to xv − t(2,v), while
c(2,v) is a commitment to t(2,v), so their product, the homomorphic addition of the committed values, gives
us a commitment to xv as required).

The tally stage uses as subprotocols some zero-knowledge proofs. In particular, we use a proof that one
vector of commitments “is a valid shuffle” of another, and a proof that “a committed number is in a specific
range”. Since we use perfectly-hiding commitments, the “value of a commitment” is not well defined. What
we actually use is a zero-knowledge proof of knowledge: the prover proves that it “knows” how to open the
commitment to a value in the range, or how to shuffle and randomize the first vector of commitments to
construct the second. These zero-knowledge protocols are based on standard techniques; simple protocols
that meet our requirements appear in Appendix 5.B.

The tally is performed in two phases. The first phase (cf. Protocol 5.2) is a public “mix-net”-like shuffle
of the commitments, while the second is a private protocol between the two authorities, at the end of which
the first authority learns how to open the shuffled commitments.

In the first phase, the authorities, in sequence, privately shuffle the vector of committed votes and
publish a new vector of commitments in a random order (we denote the new vector published by authority
Aa: da,1, . . . , da,n). The new commitments are rerandomized (so they cannot be connected to the original
voters) by homomorphically adding to each a commitment to a random multiple of m. To prevent A2 from
using the rerandomization step to “tag” commitments and thus gain information about specific voters, A1’s
randomization value is taken from a much larger range (A2 chooses a multiple of m in Z2k , while A1 chooses
one in Z22k ; we require |M| > 22k+2 so that the rerandomization doesn’t cause the commitment message
to “roll over”). Each authority also proves in zero-knowledge that the published commitments are a valid
shuffle of the previous set of commitments (where by “valid shuffle”, we mean that if it can open one vector
of commitments, then it can open the other vector to a permutation of the values). A graphic representation
of this phase of the tally appears in Figure 5.5.1.

The output of the final shuffle at the end of the first phase is a vector of commitments to the voters’ choices
that neither of the authorities can connect to the corresponding voters. However, neither of the authorities
can open the commitments, since the secret randomness is shared among both of them. In the second
phase of the tally, the authorities perform the same shuffles on encrypted, rather than committed values (the
encryptions all use the public key generated by A1). At the end of the second phase, A1 learns the information
required to open the final commitment vector, and publishes this, revealing the tally. The communication
between the authorities is over an untappable channel between them, so that the public information remains
unconditionally private. This phase of the tally is specified by Protocols 5.3 (for authority A1) and 5.4 (for
authority A2).

5.5.4 Universal Verification and Output

The verification can be performed by anyone with access to the public bulletin board. This phase consists
of verifiying all the published zero-knowledge proofs by running the zero-knowledge verifier for each proof,

5.5. SPLIT-BALLOT VOTING PROTOCOL 121

Protocol 5.2 Tally Phase 1: Authority Aa
1: Choose a random permutation σa : [n] 7→ [n],
2: Choose random values ua,1, . . . , ua,n ∈R R
3: Choose random values za,1, . . . , za,n ∈R Z2(3−a)k

4: If a = 1, wait for d2,1, . . . , d2,n to be published.
5: for 1 ≤ i ≤ n do
6: Choose a random value u′a,i ∈R R.
7: Publish d′a,i

.= da+1,σa(i) · C(0, u′a,i −mu′a,i).
8: Publish δa,i

.= C(za,i, u′a,i)
9: Publicly prove in zero-knowledge (using the random beacon) that δa,i is a commitment to a value in

Z2(3−a)k (i.e., that za,i < 2(3−a)k)
10: Publicly prove in zero-knowledge (using the random beacon) that ca,i is a commitment to a value in

Z2dlogme

11: Denote da,i
.= d′a,iδ

m
a,i = da+1,σa(i)C(za,im,ua,i)

12: end for
13: Publicly prove in zero-knowledge that d′a,1, . . . , d′a,n is a valid shuffle of da+1,1, . . . , da+1,n (using the

random beacon).

Protocol 5.3 Tally Phase 2: Authority A1

1: Wait for Tally Phase 1 to terminate.
2: Verify all the published zero-knowledge proofs of shuffling.
3: for 1 ≤ i ≤ n do
4: Send to Authority A2: e(M)

1,i
.= E(M)(si + t(1,i)) = E(M)(xi − t(2,i))

5: Send to Authority A2: e(R)
1,i

.= E(R)(r(1,i))
6: end for
7: Prove in (interactive) zero-knowledge to A2 that e(M)

1,1 , . . . , e
(M)
1,n and e(R)

1,1 , . . . , e
(R)
1,n are encryptions of the

message (resp. randomness) corresponding to c(1,1), . . . , c(1,n).
8: Wait to receive e(M)

2,1 , . . . , e
(M)
2,n and e

(R)
2,1 , . . . , e

(R)
2,n over the untappable channel from A2.

9: for 1 ≤ i ≤ n do
10: Compute ξi

.= D(M)(e(M)
2,σ1(i)) + z1,im

11: Compute ρi
.= D(R)(e(R)

2,σ1(i)) + u1,i

12: Verify that d1,i = C(ξi, ρi)
13: end for
14: Publish ξ1, . . . , ξn and ρ1, . . . , ρn.

Protocol 5.4 Tally Phase 2: Authority A2

1: Wait for Tally Phase 1 to complete.
2: Verify all zero-knowledge proofs published in phase 1.
3: Wait to receive e(M)

1,1 , . . . , e
(M)
1,n and e

(R)
1,1 , . . . , e

(R)
1,n over the untappable channel from A1.

4: Verify the zero-knowledge proof that the encryptions correspond to the committed values and randomness

5: for 1 ≤ i ≤ n do
6: Send to Authority A1: e(M)

2,i
.= e

(M)
1,σ2(i)E

(M)(t(2,σ2(i)) + z2,im) = E(M)(xσ2(i) + z2,im)

7: Send to Authority A1: e(R)
2,i

.= e
(R)
1,σ2(i)E

(R)(r(2,σ2(i)) + u2,i)
8: end for

122 CHAPTER 5. SPLIT-BALLOT VOTING

using the corresponding output of the random beacon for the random coins. The verifier then computes and
outputs the final tally. The verification protocol appears as Protocol 5.5.

Protocol 5.5 Verification
1: Verify the proof that the commitment key was generated correctly {the proof generated in step 1, Section

5.5.1}
2: for 1 ≤ i ≤ n do {Verify opened ballots chosen for audit}
3: Verify for all j ∈ Zm that c(1,i,1−bi),j = C(t(1,i,1−bi) + j (mod m), r(1,i,1−bi),j)
4: Verify that c(2,i,1−bi) = C(t(2,i,1−bi), r(2,i,1−bi))
5: end for
6: Verify the shuffle proofs (produced in step 13 of Protocol 5.2)
7: for 1 ≤ i ≤ n do {Verify opening of final, shuffled commitments}
8: Verify that d1,i = C(ξi, ρi)
9: end for

10: for i ∈ Zm do {Compute and output the tally}
11: Compute τi

.= |{j ∈ [n] | ξj ≡ i (mod m)}|
12: Output τi {The tally for candidate i}
13: end for

5.5.5 Security Guarantees

We give two different formal security guarantees for this protocol, formally specified by the theorems below.
The first is a guarantee for privacy and accuracy of the tally (Theorem 5.1), and the second a guarantee
against vote-buying and coercion (Theorem 5.2).

Theorem 5.1. The Split-Ballot Voting Protocol UC-realizes functionality F (V), for an adversary that is
fully adaptive up to the end of the voting phase, but then statically decides which of the voting authorities to
corrupt (it can still adaptively corrupt voters).

The reason for the restriction on the adversary’s adaptiveness is that the homomorphic encryption scheme
we use is committing.

Note that this limitation on adaptiveness only holds with respect to the privacy of the votes under
composition, since an adversary whose only goal is to change the final tally can only gain by corrupting both
voting authorities at the beginning of the protocol.

The proof of Theorem 5.1 appears in Section 5.6

Theorem 5.2. The Split-Ballot voting protocol is receipt-free, for any adversary that does not corrupt any
of the voting authorities.

The formal proof of this theorem appears in Section 5.7. The intuition behind it is apparent from the
coercion-resistance strategy (described in Section 5.5.2).

5.6 Proof of Accuracy and Privacy Guarantee (Theorem 5.1)

In order to prove the security of our protocol in the UC model, we must show that there exists a simulator I
(the “ideal adversary”) that internally runs a black-box straight-line (without rewinding) simulation of the
real-world adversary, A, simulating its view of the honest parties and the functionalities used by the real
protocol. At the same time, the simulator interacts with the ideal voting functionality to allow it to keep
the real-world adversary’s simulated view consistent with the input and output of the parties in the ideal
world. The protocol UC-realizes the ideal functionality if no environment machine (which sets the inputs for
the parties and controls the real-world adversary) can distinguish between a real execution of the protocol
and a simulated execution in the ideal world.

5.6. PROOF OF ACCURACY AND PRIVACY GUARANTEE (THEOREM 5.1) 123

The general idea of the simulation is that I creates, internally, a “provisional view” of the world for all
honest parties. Throughout the simulation, it updates this view so that it is consistent with the information
I learns. At any point, if the adversary corrupts a party then I also corrupts that party (learning its input,
and updating the provisional view to be consistent with that information). If the adversary corrupts both of
the election authorities, A1 and A2, I sends the RevealVotes command to F (V) (and learns the votes of
all honest parties). Because the simulator can choose the commitment key in such a way that commitments
are equivocable, it can make sure the “visible” parts of the provisional view (those that can be seen by the
adversary) are also consistent with what the environment knows at all times (by changing retroactively the
contents of the commitments). Thus, I is able to simulate the honest parties exactly according to the real
protocol, creating a view that is statistically close to the view in the real world.

There are four main sticking points in this approach:

1. The adversary can prepare “bad ballots” in the setup phase (which it does not know how to open
correctly). Since the commitment is perfectly hiding, the simulator cannot tell at that point which of
the ballots is bad. We deal with this by allowing I to change the tally by a small number of votes
(the number depends on the security parameter). The idea is that there are only two ways for the
adversary to change the tally: either it can equivocate on commitments (in this case, we can use the
environment/adversary pair to break the commitment scheme), or it prepares bad ballots. If it prepares
many bad ballots, it will be caught with high probability, since I simulates the honest voters correctly,
and they choose to audit a bad ballot pair with probability 1

2 . So if we simply ignore the cases in which
it was not caught, the distributions of the environment’s view in the real and ideal world will still be
statistically close.

2. Unlike perfectly-hiding commitments, the encryptions send in the second tally phase cannot be retroac-
tively changed in light of new information. This problem is solved by the restriction on the adaptiveness
of the adversary (either it doesn’t get to see the encryptions at all before it sees their contents, or it
doesn’t get to see the contents of the encryptions).

3. The revealed values of the shuffled commitments aren’t exactly the voters’ choices — they are the
voters’ choices only up to multiples of m. For example, If xv = 0, this value can be shared between
the authorities as 0, 0 (in which case the commitment d3,v = 0), but also as m − 1, 1, (in which case
the commitment d3,v = m). Since each authority knows its share of xv, the revealed commitment can
leak information about a specific voter. To prevent this, we would like to “rerandomize” the value
by adding a uniformly random multiple of m. However, since it is likely that m - |M|, adding large
multiples of m could change the value. Instead, authority A2 (who shuffles first) adds multiples of
m from a large range, but one that is guaranteed not to “overflow”. To prevent A2 from using the
randomization step itself to gain information about specific voters, A1 does the same thing with an
even larger range. Thus, the revealed tallies leak only a negligible amount of information about the
specific voters.

4. Finally, we use the semantic security of the encryption scheme to show that the environment/adversary
pair cannot use the encryptions sent in the tally phase to gain any advantage in differentiating the real
and ideal worlds. If it can, we can use them to break the encryption scheme.

Below we describe the protocol for I. In order to make the proof readable, we do not formally specify the
entire simulation protocol. Instead, we focus on the points where I cannot simply follow the real protocol
for its simulated parties (either because it lacks information the real parties have, or because A deviated
from the protocol). We also omit the global mechanics of the simulation: whenever A corrupts a party, I
also corrupts the corresponding ideal party; whenever A instructs a corrupted party to output a message,
I instructs the corresponding ideal party to output the message as well. If A deviates from the protocol in
a way that is evident to honest real parties (e.g., refuses to send messages, or sends syntactically incorrect
messages to honest parties), I halts the simulation (and the parties output ⊥). An exception is when corrupt
voters deviate from the protocol in this way: in this case the voter would be ignored by honest authorities
(rather than stopping the election), and I forces an abstention for that voter. Except for the noted cases,
we explictly specify when I sends commands to F (V); the simulation is self-contained and only visible to A
and the environment through the interactions of the simulated parties with the adversary.

124 CHAPTER 5. SPLIT-BALLOT VOTING

5.6.1 Setup Phase

I chooses a random seed s ∈ {0, 1}`
′

and simulates the random beacon, using K ′(s) to generate the part of
the beacon used as input to the commitment-key generation algorithm, K (this will allow I to equivocate
commitments). It then runs the ballot preparation stage by simulating A1 and A2 exactly according to
protocol (or according to the real-world adversary’s instructions, if one or both are corrupted). At the end
of this stage, the adversary is committed to the contents of any ballots it sent.

5.6.2 Voting Phase

Honest Voter. When it receives a “v has voted” message from the voting functionality for an honest voter
v, I begins simulating voter v running Protocol 5.1. The actions of I depend on whether the adversary has
corrupted both A1 and A2:

Case 1: If both A1 and A2 are corrupt, I learns xv from the voting functionality. It can then exactly simulate
an honest voter voting xv

Case 2: If at least one of the authorities is honest, I simulates a voter using a random value x′v for the voter’s
choice value. This involves choosing a random commitment from the set received from A1.

Corrupt Voter. Throughout this phase, I simulates a corrupt voter v by following A’s instructions exactly. If
both authorities were honest at the beginning of the voting stage (in particular, if the ballots were generated
by I), I computes xv = sv + t(1,v) + t(2,v) and sends a Vote (v, xv) command to F (V). If at least one
authority was corrupt at the beginning ot the voting stage, I sends nothing to the ideal functionality (but
in this case it will be able to cast a vote in the tally phase). Denote by W the number of voters for which I
did not cast a vote during the voting phase.

Voter Corrupted During Protocol. If a voter v is honest at the beginning of the phase, and is corrupted
during the protocol, I learns the real choice xv when the voter is corrupted. If both authorities were already
corrupt, I already knows xv so this information will not have changed any of the views in the simulation.
If at least one authority was honest and x′v 6= xv, I has to rewrite its history (both that of the honest
authority and that of voter v) to be consistent with the new information. In this case, it uses its ability to
equivocate commitments to rewrite the value of t(a,v), where a is the index of an honest authority (this will
also change the randomness of the commitments). The new value will satisfy xv = sv + t(1,v) + t(2,v).

Authority Corrupted During Protocol. If, at the beginning of the voting phase, both authorities are honest
and later one is corrupted, I does not need to rewrite its history, since it is consistent with the real world
simulation.

If, at the beginning the voting phase, at least one authority is honest and sometime later both of the
authorities become corrupted, I learns the choices of all previous voters at that point. In this case, when the
last authority is corrupted, I may be forced to rewrite its history as well as that of the honest voters whose
choices didn’t match the guesses made by I. It does this by using its ability to equivocate commitments in
order to change only the private parts of the ballots which were not seen by A before the corruption.

Case 1: If A1 is corrupted last, I can rewrite the value t(1,v) to match the voter’s choice by equivocating on
the commitments c(1,v),1, . . . , c(1,v),m

Case 2: If A2 is corrupted last, I can rewrite the value t(2,v) to match the voter’s choice by equivocating on
the commitment c(2,v)

5.6.3 Tally Phase

This phase begins when a voting authority sends the Tally command to F (V), or the adversary has corrupted
an authority and decides to end the voting phase. I waits for F (V) to announce the tally. The simulator’s
strategy now depends on which of the voting authorities is corrupt (note that from this stage on the adversary
is static with regard to corrupting the voting authorities). We can assume w.l.o.g. that A corrupted the

5.6. PROOF OF ACCURACY AND PRIVACY GUARANTEE (THEOREM 5.1) 125

relevant authorities at the start of the Setup phase: if only one authority is corrupted during the protocol,
I’s simulation is identical to the case where the authority was corrupt from the start, but chose to follow
the protocol correctly. If both authorities are corrupted, I was required to rewrite its view at the time of
the second corruption; however, the rewritten history is identical to a simulation in which both authorities
were corrupted from the start and chose to follow the protocol honestly.

Case 1: Neither voting authority is corrupt. I generates vectors of random commitments for d1,1, . . . , d1,n,
d2,1, . . . , d2,n, d′1,1, . . . , d′1,n and d′2,1, . . . , d

′
2,n.

Using its ability to equivocate, I can open the commitments to any value. In particular, it can pass
all the zero-knowledge proofs. and open the commitments d1,1, . . . , d1,n to values that match the
announced tally and are identically distributed to the outcome in the real world protocol.

Case 2: Exactly one authority is corrupt. I rewrites its provisional view for the honest authority to make
it consistent with the announced tally, using a random permutation for the honest voters. It then
simulates the honest authority according to protocol, using its provisional view. At the end of Protocol
5.3, I simulates the verifier running Protocol 5.5. If verification fails, I halts in the ideal world as well.
Otherwise, I now knows the real-world tally: τ0, . . . , τm−1. This may be different from the ideal-world
tally announced by F (V); If the ideal-world tally can be changed to the real-world one by adding W
votes and changing k votes (where W is the number of corrupt voters for whom I did not cast a vote
in the voting phase), I sends the appropriate Vote commands to F (V), then sends an Announce
command with the updated tally. Otherwise, I outputs “tally failure” and halts. In this case the real
and ideal worlds are very different; however, we prove that this happens with negligible probability
(see Claim 5.5).

If an honest voter v is corrupted during the tally phase, I learns xv and must provide the voter’s
provisional history to A. If x′v 6= xv, I chooses one of the remaining honest voters v′ for which
x′v′ = xv and rewrites both voters’ views by equivocating on the commitments generated by the
honest authority. In the new views x′v′ ← x′v and x′v ← xv. Note that there will always be such
an honest voter, since the provisional views of the simulated honest voters are consistent with the
ideal-world tally, which is consistent with the inputs of the ideal voters.

Case 3: Both authorities are corrupt. In this case, I knows the inputs of all voters, so it can create a
completely consistent view. I follows the instructions of the real-world adversary until ξ1, . . . , ξn and
ρ1, . . . , ρn are published. It then simulates the verifier running Protocol 5.5. If verification fails, I
halts in the ideal world as well. Otherwise, I now knows the real-world tally: τ0, . . . , τm−1. As in
the case of a single corrupt authority, if the ideal-world tally can be changed to the real-world one by
adding W votes and changing k votes, I sends the appropriate Vote commands to F (V), then sends
a Announce command with the real-world tally. Otherwise, I outputs “tally failure” and halts.

5.6.4 Indistinguishability of the Real and Ideal Worlds

To complete the proof of Theorem 5.1, we must show that the environment machine cannot distinguish
between the real protocol executed in the real world, and I’s simulation executed in the ideal world. This is
equivalent to showing that the views of the environment in both cases are computationally indistinguishable.

To define the environment’s view, it is helpful to explicitly describe the views of all the parties in the
real world:

Verifier: The verifier’s view consists of all the public information (and only that):

1. The output of the random beacon: R.
2. The commitment public key, cpk = K(R), generated by A1 in the Setup phase
3. The proof of correctness for the commitment public key (the output of PK)
4. The audit bits of the voters: bv for all v ∈ [n].
5. The public and private parts of all the audit ballots: B~w for all ~w = (a, v, i) such that i = 1− bv.

126 CHAPTER 5. SPLIT-BALLOT VOTING

6. Randomness for all the audit ballots: r~w for all ~w = (2, v, i) such that i = 1− bv and r~w,j for all
v ∈ [n], j ∈ Zm and ~w = (1, v, 1− bv).

7. Public part of the ballots for cast ballots: sv,c(1,v),j and c(2,v) for all v ∈ [n] and j ∈ Zm.
8. Public proofs of tally correctness: d′a,1, . . . , d′a,n, δa,1, . . . , δa,n for a ∈ {1, 2} and the transcripts

of the zero-knowledge proofs that these were generated correctly.
9. The Opening of the shuffled commitments: ξ1, . . . , ξn and ρ1, . . . , ρn.

Voter v: The voter’s view includes all the public information (the verifier’s view) in addition to:

1. The voter’s input: xv
2. The private part of the voter’s ballots: t(1,v) and t(2,v)

Authority A1: The view of this authority consists of the verifier’s view, and in addition:

1. The public keys for the encryption schemes: pk(M) and pk(R).
2. The secret keys for the encryption schemes: sk(M) and sk(R).
3. The private parts of the voters’ ballots: t(1,v) for all v ∈ [n]
4. The randomness for the commitments in the voters’ ballots: r~w,j for all v ∈ [n], j ∈ Zm and

~w = (1, v, bv)
5. The permutation σ1 and the values u1,1, . . . , u1,n, u′1,1, . . . , u′1,n and z1,1, . . . , z1,n

6. The secret random coins for the encryptions sent to A2.

7. The encryptions received from A2: e(M)
2,1 , . . . , e

(M)
2,n and e

(R)
2,1 , . . . , e

(R)
2,n and their contents.

8. The secret random coins used in the zero-knowledge proofs in which A1 was the prover.

Authority A2: The view of this authority consists of the verifier’s view, and in addition:

1. The public keys for the encryption schemes: pk(M) and pk(R)

2. The private parts of the voters’ ballots: t(2,v) for all v ∈ [n]
3. The randomness for the commitments in the voters’ ballots: r~w for all v ∈ [n] and ~w = (2, v, bv)
4. The permutation σ2 and the values u2,1, . . . , u2,n, u′2,1, . . . , u′2,n and z2,1, . . . , z2,n

5. The encryptions received from A1: e(M)
1,1 , . . . , e

(M)
1,n and e

(R)
1,1 , . . . , e

(R)
1,n .

6. The secret random coins for the encryptions sent to A1.
7. The secret random coins used in the zero-knowledge proofs in which A2 was the prover.

A: The real-world adversary’s view consists of the verifier’s view, any messages it receives from the envi-
ronment and the view of any party it corrupts.

Environment: The environment’s view consists of A’s view, and in addition, the inputs of all the voters:
x1, . . . , xn and its own random coins.

In the ideal world, the environment’s view is the same, except that the views of the real-world parties
are those simulated by I. The other difference is that in the ideal world, the output of the verifier seen by
the environment is the tally produced by F (V) (none of the other parties have output).

The following lemma completes the proof of Theorem 5.1:

Lemma 5.3. The enviroment’s view in the real world is computationally indistinguishable from its view in
the ideal world.

Proof. Setup and Voting Phases. First, note that in the Setup and Voting phases of the protocol, as long as
I can perfectly equivocate commitments, the views are identically distributed. This is because the views of
the simulated parties are always kept in a perfectly consistent state, given the knowledge I has about the
voters’ inputs. Whenever a simulated party is corrupted, I gains enough information to perfectly rewrite its
view so that it is consistent with the previous view of the environment.

5.6. PROOF OF ACCURACY AND PRIVACY GUARANTEE (THEOREM 5.1) 127

Thus, the only possible way the views could differ is if I cannot equivocate commitments. This can occur
only if the commitment key published in the Setup phase is not the one chosen by I. But by the definition
of the commitment scheme, the probability that A1 can generate a key that passes verification but does not
allow equivocation is negligible.

Tally Phase. In the Tally phase, I deviates from a perfect simulation only when at least one of the authorities
is corrupt. The possible reasons I’s simulation may be imperfect are:

1. The Vote commands sent to F (V) by the simulator are not consistent with the tally in the simulation.
This would cause the output of the verifier in the ideal world to differ from its output in the real world.
Note that the inconsistency will be noticable only if the ideal-world tally is “far” from the real-world
tally: If it can be modified by adding W arbitrary votes and changing up to k votes, I will be able to
“fix” the ideal-world tally. The probability that I fails in this way is negligible, as we prove in Claim
5.5.

2. If A1 is honest and A2 is corrupt:

(a) The encryptions e(M)
1,1 , . . . , e

(M)
1,n and e

(R)
1,1 , . . . , e

(R)
1,n may be inconsistent with the environment’s

view in the ideal world: the encrypted values contain I’s simulated inputs for the honest voters
(which may differ from the real inputs of the voters). The environment, however, knows the real
inputs of the voters. Although the environment’s views may be statistically far, the semantic
security of the encryption scheme implies that the encryptions of two different messages are
computationally indistinguishable, even when the messages are known. Hence, the environment’s
views of the encryptions in the real and ideal world are computationally indistinguishable.

(b) The distribution of ξ1 . . . , ξn may be inconsistent with the environment’s view in the ideal world.
This can happen because ξ1, . . . , ξn is a permutation of x1, . . . , xn only modulom; the actual values
depend on the permutations σ1, σ2 the values t(1,1), . . . , t(1,n), t(2,1), . . . , t(2,n), z(1,1), . . . , z(1,n),
z(2,1), . . . , z(2,n) and on the order of the simulated votes chosen by I (which may differ from the
actual order). However, the statistical distance between the views of ξ1, . . . , ξn in the real and
ideal worlds is negligible. Intuitively, this is because A2 can only add multiples of m up to 2k.
No matter what it does, once A1 adds a multiple of m uniformly chosen up to 22k, the output
distribution will be nearly uniform (only an exponentially small fraction of the output values will
have different probabilities). We prove this formally in Claim 5.4.

3. If A1 is corrupt and A2 is honest, the distribution of ξ1 . . . , ξn may be inconsistent with the environ-
ment’s view in the ideal world. This can happen for exactly the same reason as it does when A2 is
corrupt and A1 honest: the extra multiples of m in ξ1 . . . , ξn may contain information about the order
of the votes. As in the previous case, the statistical distance between the views of ξ1, . . . , ξn in the real
and ideal worlds is negligible (here the intuition is that A1 can only set tv to be at most 2m, while A2

will add a multiple of m uniformly chosen up to 2k. We omit the formal proof, as it is almost identical
to the proof of Claim 5.4.

Verification Phase. Since the verifier cannot be corrupted and uses only public information, the views of
the environment in the verification phase are identical in the real and ideal world, except in case of a tally
failure (which we prove occurs with negligible probability).

The proof of Lemma 5.3 is completed by the claims below:

Claim 5.4. Fix any permutation σ2 and values t(1,1), . . . , t(1,n) ∈ Z2m, t(2,1), . . . , t(2,n) ∈ Z2m, z(2,1), . . . , z(2,n) ∈
Z2k and x1, . . . , xn ∈ Zm. For a permutation π, let Ξπ = ξ1 . . . , ξn be the output of the protocol when it is
run with the fixed values, permuted voter inputs xπ(1), . . . , xπ(n) and when σ1, z(1,1), . . . , z(1,n) are chosen
randomly (following the protocol specification).

Then for any two permutations π1 and π2, the statistical difference between Ξπ1 and Ξπ2 is at most
n2−k+1.

128 CHAPTER 5. SPLIT-BALLOT VOTING

Proof. Note that ξi = xπ(σ2(σ1(i))) + (fσ2(σ1(i)) + z2,σ1(i) + z1,i)m, where fi ∈ Z4. First, we define a new
random variable Ξ′π = (ξ′1 . . . , ξ′n), whose value is similar to Ξπ, except without the fixed multiples of m:
ξ′i = xπ(σ2(σ1(i))) + z1,im. Note that π ◦σ2 ◦σ1 is a random permution for any fixed π and σ2, and {z1,i} are
identically and independently distributed. Hence, for any two permutations π1 and π2, Ξ′π1 and Ξ′π2 are
identically distributed. Next, we will show that for any permutation π, the statistical difference between Ξ′π
and Ξπ is at most n2−k. Thus, by the triangle inequality, the statistical difference between Ξπ1 and Ξπ2 is at
most n2−k+1. Denote ~ξ .= (ξ1 . . . , ξn). By definition, the statistical difference between the two distributions
is:

∆(Ξ′π,Ξπ) =
1
2

∑
~ξ

∣∣∣Pr[Ξ′π = ~ξ]− Pr[Ξπ = ~ξ]
∣∣∣

=
1

2n!

∑
~ξ

∣∣∣∣∣∑
σ1

[
Pr[Ξ′π = ~ξ | σ1]− Pr[Ξπ = ~ξ | σ1]

]∣∣∣∣∣
≤ 1

2n!

∑
~ξ,σ1

∣∣∣Pr[Ξ′π = ~ξ | σ1]− Pr[Ξπ = ~ξ | σ1]
∣∣∣ .

Denote p .= Pr[Ξπ = ~ξ | σ1] and p′ .= Pr[Ξ′π = ~ξ | σ1]. Let ζi
.= fσ2(σ1(i)) + z2,σ1(i) (the fixed multiples of m)

and θi
.= xπ(σ2(σ1(i))) (the permuted inputs). Note that since fσ2(σ1(i)) < 4 ≤ 2k we have 0 ≤ ζi ≤ 2k+1. By

our definition of p:

p = Pr[
n∧
i=1

(θi + ζim+ z1,im = ξi) | σ1]

(where the probability is only over {z1,i}). Hence, p 6= 0 only if for all 1 ≤ i ≤ n, it holds that θi ≡ ξi
(mod m) and z1,i = 1

m (ξi − θi)− ζi.
Since z1,i is uniformly chosen in Z22k (and in particular 0 ≤ z1,i ≤ 22k), it follows that p 6= 0 only if for

all 1 ≤ i ≤ n:

ζi ≤
1
m

(ξi − θi) ≤ 22k + ζi.

When p > 0, then p = 2−2kn (since for every i there is exactly one “good” choice for z1,i). Similarly,
p′ 6= 0 only if for all 1 ≤ i ≤ n, it holds that θi ≡ ξi (mod m) and 1

m (ξi − θi) ≤ 22k. Hence, if p 6= p′ then
for all 1 ≤ i ≤ n: θi ≡ ξi (mod m) and either

Case 1: p 6= 0, p′ = 0: for all 1 ≤ i ≤ n, ζi ≤ 1
m (ξi−θi) ≤ 22k+ζi and there exists i such that 22k < 1

m (ξi−θi) ≤
22k + ζi or

Case 2: p = 0, p′ 6= 0: for all 1 ≤ i ≤ n, 1
m (ξi − θi) ≤ 22k and there exists i such that 1

m (ξi − θi) ≤ ζi.

Note that both p and p′ depend only on ~ξ (and not on σ1). So we can write

∆(Ξ′π,Ξπ) ≤ 1
2

∑
~ξ

|p(~ξ)− p′(~ξ)| = 2−2kn−1
∣∣∣{~ξ | p(~ξ) 6= p′(~ξ)

}∣∣∣ (5.6.1)

We can list all such ~ξ (possibly overcounting) in the following way:

1. Choose i ∈ [n] (n possibilities)

2. Choose one of the two cases above for which p 6= p′ (2 possibilities):

3. Depending on which is chosen, either:

Case 1: choose ξi such that 22k + ζi ≥ 1
m (ξi − θi) > 22k or

Case 2: choose ξi such that 1
m (ξi − θi) ≤ ζi

(in either case, since m ≥ 2, there are 1
mζi ≤ 2k possibilities)

5.6. PROOF OF ACCURACY AND PRIVACY GUARANTEE (THEOREM 5.1) 129

4. For all 1 ≤ j ≤ n, j 6= i:

Case 1: choose ξj such that ζj ≤ 1
m (ξj − θj) ≤ 22k + ζj or

Case 2: choose ξj such that 1
m (ξj − θj) ≤ 22k

(in either case, there are
∏
j

1
m22k ≤ 22(k−1)(n−1) ≤ 22kn−k possibilities)

Thus, the number of ~ξs that satisfy p(~ξ) 6= p′(~ξ) is bounded by n22kn−k+1. Plugging this in to inequality
5.6.1, we get ∆(Ξ′π,Ξπ) ≤ 2−2kn−1 · nn22kn−k+1 ≤ n2−k.

Claim 5.5. The probability that the ideal simulator terminates the simulation by outputting “tally failure”
is a negligible function of k.

Proof. I outputs “tally failure” only if the simulated verifier did not abort, and the ideal tally (computed
by F (V)) cannot be changed to the real tally (the one output by the simulated verifier) by adding W votes
and changing k votes (where W = 0 if both authorities were honest at the beginning of the voting phase,
and otherwise W is the number of voters who were corrupt during the voting phase).

Assume, in contradiction, that the environment/real-world adversary pair can cause a tally failure with
probability ε. We will show how to use such an environment/adversary pair to break the binding property
of the commitment scheme.

That is, there exists a machine M that can produce, with probability polynomial in ε, a commitment c
and m1, r1, m2, r2, m1 6= m2 such that c = C(m1, r1) = C(m2, r2).

M works by simulating the entire ideal world (including the enviroment machine, F (V) and the ideal-
world adversary, I). After each of the public zero-knowledge proofs of knowledge in the Tally phase (steps
9, 10 and 13 in Protocol 5.2), M rewinds the environment/real-adversary pair and runs their corresponding
knowledge extractors. Let ε′ be the probability that the knowledge extractors succeed for all the proofs.
Since each knowledge extractor succeeds with probability polynomial in the probability that the verifier
accepts, and the verifier accepts all the proofs with probability at least ε (otherwise it would not cause a
tally failure), ε′ = poly(ε).

The proofs of knowledge allowM to extract the permutations for the shuffles performed by the authorities,
along with the randomizing values (and ensure that the extracted values are in the correct ranges). Since the
final opened commitments are consistent with the real tally, the extracted value of the original commitment
vector (before both shuffles and randomization) must also be consistent with the real tally. Let (x′′v, (r′′)v)
denote the opening of the commitment d3,v that is output by M .

For any execution of the protocol in the ideal world, the ideal tally consists of the tally of all voters (if
both authorities were honest at the beginning of the Voting phase) or only of the honest voters (otherwise)
This is because I does not send a Vote command on behalf of corrupt voters if one of the authorities was
corrupt at the beginning of the Voting phase). A tally failure means that even after adding W votes to the
ideal tally, it differs from the real tally by more than k votes.

Case 1: All the ballots were generated by honest authorities. Since the honest authorities are simulated
by I (which is, in turn, simulated by M), this means all the ballots were generated by M . In particular,
there exists a voter v such that xv 6= x′′v, and for whichM knows r(1,v), r(2,v). Since d3,v = C(xv, r(1,v)+
r(2,v)) by the construction of d3, and d3,v = C(x′′v, r′′v) by the knowledge extraction, M can open d3,v

in two different ways.

Case 2: At least some of the ballots were generated by a corrupt authority. In this case, there must
still be at least k honest voters v1, . . . , vk such that xvi 6= x′′vi . (since W is the number of corrupt
voters). To break the commitment scheme, M rewinds the ideal-world to the end of the setup phase
(after all the ballots have been committed), then reruns the simulation with new randomness for I. In
particular, the honest voters’ audit bits are new random bits. The probability that both simulations
end with tally failures is at least ε′2. In particular, when this occurs, the authorities correctly opened
all the audited commitments in the second simulation. The probability that all k of the voters will
have the same audit bits in both simulations is 2−k. If this does not occur, the corrupt authorities
will publish r(1,vi), r(2,vi) such that d3,vi = C(xvi , r(1,vi) + r(2,vi)) for at least one of the honest voters.
Again, this will allow M to open d3,vi in two different ways.

130 CHAPTER 5. SPLIT-BALLOT VOTING

Taking a union bound, in the worst case the probability that M succeeds is at least ε′2 − 2−k = poly(ε) −
2−k. If ε is non-negligible, then M can break the binding property of the commitment with non-negligible
probablity.

5.7 Proof of Receipt-Freeness (Theorem 5.2)

The definition of receipt-freeness shares many elements with the security definitions of the universal com-
posability framework, hence the proofs will also be very similar. In both cases, we must show that the
view of an adversary in the real world is indistinguishable from its view of a simulated protocol execution
in an ideal world, where there exists an ideal simulator, I. There is one main difference: the adversaries
(in both the real and ideal worlds) can perform an additional action: coercing a party. Each party has, in
addition to their input, a “coercion-response” bit and a fake input (both also hidden from the adversary).
The coercion-response bit determines how they will respond to coercion. When the bit is 1, a coerced party
behaves exactly as if it were corrupted. When the bit is 0, however, instead it executes a “coercion-resistance
strategy”. In the ideal world, the strategy is to send its real input to F (V), but lie to the adversary and
claim its input was the fake input. In the real world, the coercion-resistance strategy is specified as part of
the protocol (see Section 5.5.2).

Like the proof of security in the UC model, the proof of Theorem 5.2 has two parts: the description
of the simulation run by I in the ideal world, and a proof that the adversary’s views in the real and ideal
worlds are indistinguishable. The simulation is almost identical to the simulation in the proof of Theorem
5.1. The difference is what happens when A coerces a voter (this does not occur in the original simulation).
I handles coercions of voters exactly like corruptions (i.e., they do not run the coercion-resistance strategy),
with the following modifications:

1. I coerces rather than corrupts the ideal voter.
2. If voter v was coerced before step 4 of the Voting phase (i.e., before entering the voting booth), I sends

a Vote v, ∗ command to F (V) (signifying a forced random vote), instead of a standard vote command.
3. If the adversary causes the voter to behave in a way that would invalidate her vote (e.g., send syntac-

tically incorrect commands, or abort before casting a ballot), I sends a Vote v,⊥ command to F (V)

(signifying a forced abstention).

5.7.1 Indistinguishability of the Real and Ideal Worlds

To complete the proof of Theorem 5.2, we prove the following lemma:

Lemma 5.6. The adversary’s view in the real world is identically distributed to its view in the ideal world.

Proof. Note that we only need to consider the case where both voting authorities are honest. Hence, the
adversary’s view consists only of the verifier’s view (the random beacon and the information on the bulletin
board) and the views of corrupted voters and coerced voters (which, in the real world, may be fake, depending
on the value of their coercion-response bit).

We can assume the adversary also determines the inputs, fake inputs, and coercion-response bits of all
the voters (these are not given to I).

First, note that the generated ballots always consist of uniformly random values, independet of the voters’
inputs, and the private part of the ballot is independent (as a random variable) of the public part of the
ballot (since the commitments are perfectly hiding). Thus, the view generated by the coercion-resistance
strategy is identically distributed to the view of an honest voter in the real world, which in turn is identically
distributed to the view simulated by I.

Since, when authorities are honest, corrupt voters can have no effect on other voters (except by changing
the final tally), we can assume w.l.o.g. that the adversary does not corrupt voters (it can simply determine
the inputs for honest voters). The only remaining possibility for a difference between the adversary’s views
is the joint distribution of the inputs, fake inputs, coercion-resistance bits and the final tally. However, since
I can perfectly equivocate on commitments, the simulated tally it produces will always be consistent with
the ideal tally, and distributed identically to the tally in the real world.

5.8. DISCUSSION AND OPEN PROBLEMS 131

5.8 Discussion and Open Problems

Multiple Questions on a Ballot. As shown in the “illustrated example”, our voting protocol can be easily
adapted to use multiple questions on the same ballot. If there are many questions, the pattern of votes on a
single ballot may uniquely identify a voter, hence tallying the questions together may violate voter privacy.
In this case, the tally protocol should be performed separately for each question (or for each small group).

More than Two Authorities. We described the protocol using two authorities. The abstract protocol can
be extended to an arbitrary number of authorities (although this may require finding a threshold version of
the encryption scheme). However, a major stumbling block is the human element: even for two authorities
this protocol may be difficult for some users. Dividing a vote into three parts will probably be too complex
without additional ideas in the area of human interface.

Receipt-Freeness with a Corrupt Authority. The current protocol is not receipt-free if even one of the
authorities is corrupt. Note that this is not a problem in the proof, but in the protocol itself (if the voter
does not know which authority is corrupt): the voter can’t tell which of the ballots the coercer will have
access to, so she risks getting caught if she lies about the value she erased from the ballot. It is an interesting
open question whether this type of attack can be prevented.

Better Human Interface. Probably the largest hurdle to implementing this protocol is the human interface.
Devising a simple human interface for modular addition could prove useful in other areas as well.

APPENDIX

5.A Homomorphic Commitment and Encryption Schemes Over
Identical Groups

Our voting scheme requires a perfectly private commitment scheme with “matching” semantically-secure
encryption schemes. The commitment scheme’s message and randomizer spaces must both be groups, and
the commitment scheme must be homomorphic (separately) in each of the groups. There must be a matching
encryption scheme for each group, such that the encryption scheme’s message space is homomorphic over
that group.

To meet these requirements, we propose using the standard Paillier encryption scheme. The Paillier
encryption public key consists of an integer N = p1p2, where p1 and p2 are safe primes, and an element
e ∈ Z∗N2 . The private key is the factorization of N . The encryption plaintext is in the group Zn

For the commitment scheme, we propose a modified version of the Pedersen commitment scheme where
both messages and randomness are also in the group ZN . The commitment public key consists of N (the
same value as the encryption public key) along with random generators g, h in the order N subgroup of
Z∗4N+1. Below we give the details of this construction.

5.A.1 Modified Pedersen

The abstract version of Pedersen commitment has a public key consisting of a cyclic group G and two random
generators g, h ∈ G such that logg h is not known to the committer. The cryptographic assumption is that
logg h is infeasible to compute.

The message and randomizer spaces for this scheme are both Z|G|. C(m, r) .= gmhr. Since g and
h are both generators of the group, for any m, when r is chosen at random gmhr is a random group
element. Therefore, this scheme is perfectly hiding. If an adversary can find (m1, r1) 6= (m2, r2) such that
gm1hr1 = gm2hr2 , then it can compute logg h = m2−m1

r1−r2 , violating the cryptographic assumption. Hence the
scheme is computationally binding. It is easy to see that the scheme is homomorphic.

Finally, if we choose g, h = gx, where g is chosen randomly and x is chosen randomly such that gx is a
generator, we get an identically distributed public key, but knowing x it is easy to equivocate.

132 CHAPTER 5. SPLIT-BALLOT VOTING

In the “standard” implementation of Pedersen, G is taken to be the order q subgroup of Z∗p, where
p = 2q+ 1 and both p and q are prime (i.e., p is a safe prime). g and h are randomly chosen elements in this
group. The discrete logarithm problem in G is believed to be hard when p is a safe prime chosen randomly
in (2n, 2n+1).

Our modified version of Pedersen takes G to be the order N = p1p2 subgroup of Z∗4n+1, where p1 and p2

are safe primes and 4n+ 1 is also prime (we can’t use 2n+ 1, since that is always divisible by 3 when p1 and
p2 are safe primes). The computational assumption underlying the security of the commitment scheme is
that, when p1 is a random safe prime and g and h are random generators of G, computing logg h is infeasible.
Note that it is not necessary to keep the factorization of N secret (in terms of the security of the commitment
scheme), but knowing the factorization is not required for commitment.

5.A.2 Choosing the Parameters

The connection between the keys for the commitment and encryption schemes makes generating them slightly
tricky. On one hand, only one of the authorities can know the private key for the encryption scheme (since its
purpose is to hide information from the other authority). On the other hand, the security of the commitment
must be publicly verifiable (even if both authorities are corrupt), hence we cannot allow the authorities to
choose the parameters themselves. Moreover, for the commitment to be binding, N must have a large random
prime factor, and g and h must be chosen randomly.

Below, we sketch our proposed protocol for verifiably generating the system parameters. Protocol 5.6
generates the parameters for the Paillier encryption, and Protocol 5.7 the parameters for the modified
Pedersen commitment. The basic idea is that A1 can use zero-knowledge proofs to show that the modulus
N = p1p2 is product of two safe primes, and to prove that p1 is a random safe prime: basically, that it
is the outcome of a coin-flipping protocol that A1 conducts with the random beacon (this is accomplished
by the loop at step 1 in Protocol 5.6). Technically, the proofs should be output by Protocol 5.7 rather
than 5.6 (since they are required to prove the security of the commitment scheme). However, to clarify the
presentation we have included them in the encryption key-generation protocol.

The generators g, h for the order N subgroup of Z∗4N+1, needed for the Pedersen scheme, are simply
random elements of Z4N+1 (chosen using the random beacon). This works because a random element
g ∈R Z4N+1 will be an element of Z∗4N+1 with order o(g) ∈ {N, 2N, 4N} except with negligible probability
(O(1/

√
N)), assuming p1 and p2 are of order O(

√
N)). If the order of g is 2N (resp. 4N), then g2 (resp.

g4) will have order N (this computation can be replicated by the verifiers).
The protocols require integer commitments that have an efficent zero-knowledge proof of multiplication.

We need an integer commitment scheme whose setup can be performed using a random beacon (rather than
a trusted party). One such possibility is the Damg̊ard-Fujisaki scheme [33], when instantiated using class
groups rather than an RSA modulus. For the zero-knowledge proofs that p1 and p2 are safe primes, we can
use the techniques of Camenisch and Michels [14].

Note that if we had a trusted third party to help with setup, we could significantly simplify it. Even a third
party that is only trusted during the setup could help (for instance, by allowing us to use Damg̊ard-Fujisaki
with an RSA modulus generated by the third party).

5.B Zero-Knowledge Proofs of Knowledge

Our protocols require proving statements in zero-knowledge about committed values. Since we use perfectly-
hiding commitments, proving that there exists an opening of a commitment with some property is mean-
ingless: there exist openings of the commitment to every value. Instead, we use zero-knowledge proofs of
knowledge [6]. Roughly, there exists an efficient “knowledge extractor” that, given oracle access to a prover
that succeeds with with some non-negligible probability, can output a value consistent with what the prover
claims to know.

In this section we briefly describe the zero-knowledge proof subprotocols. These are all honest-verifier,
public-coin, zero-knowledge proofs of knowledge, using standard cut-and-choose techniques. When they are
used publicly (i.e., on the bulletin board), the verifier’s coins are taken from the random beacon, hence

5.B. ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE 133

Protocol 5.6 Key Generation for Encryption (KG)
Input: Security parameter k

1: repeat {Generate a verifiable commitment C1 to a random safe prime: p1}
2: Choose a random p′ ∈R Z2k

3: Publish a commitment C ′ to p′

4: Interpret the next output of the random beacon as a number p′′ ∈R Z2k

5: if p1 = p′ + p′′ (mod 2k) is a safe prime then
6: Publish a commitment C1 to p1

7: Prove in zero-knowledge (using the random beacon) that C1 is a commitment to a safe prime, and
that it is the sum of p′′ and the committed value of C ′. {if the commitment is statistically hiding,
this will be a zero-knowledge proof of knowledge}.

8: else
9: Publicly open the commitment C ′, revealing p′.

10: end if
11: until p1 is a safe prime
12: Privately choose a random k-bit safe prime p2, such that 4p1p2 + 1 is prime.
13: Publish N = p1p2

14: Publish a commitment C2 to p2

15: Prove in zero-knowledge that C2 is a commitment to a safe prime, and that the product of the values
committed to in C1 and C2 is N .

16: Run the standard Paillier key generation using N as the modulus.

Protocol 5.7 Key Generation for Commitment (K)
Input: Modulus N output by KG (Protocol 5.6)

1: Interpret the next output of the random beacon as elements g, h ∈ Z∗4N+1.
2: for x ∈ {g, h} do
3: while xN 6≡ 1 (mod N2) do
4: x← x2

5: end while
6: end for
7: Output g, h and N .

134 CHAPTER 5. SPLIT-BALLOT VOTING

the honest-verifier assumption makes sense. Although more efficient protocols exist for these applications
[11, 44], for the purpose of this paper we concentrate on simplicity and ease of understanding.

5.B.1 Proof That Two Commitments Are Equivalent

In step 7 of Protocol 5.3, authority A1 must prove that an encryption it generated has the same value as a
previously published commitment. The following subprotocol works for any two homomorphic commitment
schemes (in this case we can consider the encryption a commitment scheme), as long as their message
groups are isomorphic. Since our commitment scheme is symmetric (we can consider it a commitment to
the randomness), this protocol works for that case as well.

We will assume two commitment schemes C1 and C2, with message space M, commitment spaces C1, C2
(resp.) and randomness groups R1,R2 (resp.).

Let c1 ∈ C1 and c2 ∈ C2 be the commitments for which we are proving “equivalence”. Formally, what the
protocol proves is that the prover knows a value x ∈M and values r1 ∈ R1, r2 ∈ R2 such that c1 = C1(x, r1)
and c2 = C2(x, r2). The complete protocol consists of k repetitions of Protocol 5.8; the probability that the
prover can cheat successfully is exponentially small in k.

Protocol 5.8 Zero-Knowledge Proof That Two Committments Are Equivalent
Input: Verifier receives c1 ∈ C1 and c2 ∈ C2, Prover receives x ∈ M and r1 ∈ R1, r2 ∈ R2 such that

c1 = C1(x, u1) and c2 = C2(x, u2)
1: Prover chooses values s ∈RM and u1 ∈R R1, u2 ∈ R2

2: Prover sends to verifier: d1
.= C1(x+ s, r1 + u1) and d2

.= C2(x+ s, r2 + u2)
3: Verifier sends to the prover a random bit b ∈R {0, 1}
4: if b = 0 then
5: Prover sends to the verifier: s, u1 and u2.
6: Verifier checks that d1 = c1C(s, u1) and d2 = c2C(s, u2)
7: else
8: Prover sends to the verifier: x+ s, r1 + u1 and r2 + u2

9: Verifier checks that d1 = C(x+ s, r1 + u1) and d2 = C(x+ s, r2 + u2)
10: end if

5.B.2 Proof of Commitment Shuffle

We say a vector of commitments is “a valid shuffle” of a second vector if, whenever the prover can open one
vector, it can open both vectors to permutations of the same set of values. Note that this property is an
equivalence relation (with respect a single prover).

An important point is that we do not require the prover to show that it can open either of the vectors of
commitments. This property is necessary, because our voting protocol requires a voting authority to shuffle
commitments that it does not know how to open.

To construct a zero-knowledge proof, we use a standard cut-and-choose technique. Roughly, the prover
publishes a third vector of commitments, then, according to the verifier’s choice, it either shows that this
third vector is a valid shuffle of the first, or that third vector is a valid shuffle of the second. If it is both,
the first vector must be a valid shuffle of the second (and vice-versa).

Formally, let c1, . . . , cn ∈ C and c′1, . . . , c
′
n ∈ C be commitments. The prover must show that it knows a

permutation σ : [n] 7→ [n] and values r1, . . . , rn ∈ R such that for all i ∈ [n]: c′i = cσ(i) · C(0, ri).
The protocol consists of k repetitions of Protocol 5.9 (where k is the security parameter).

5.B.3 Proof that a Committed Value is in Z2k

In steps 9 and 10 of Protocol 5.2, each authority must prove that a committed value “is in an appropriate
range”.

5.C. A FORMAL DEFINITION OF RECEIPT-FREENESS 135

Protocol 5.9 Zero-Knowledge Proof of Valid Shuffle
1: Prover chooses a random permutation π : [n] 7→ [n]
2: Prover chooses values r′1, . . . , r′n ∈R R.
3: for 1 ≤ i ≤ n do
4: Prover sends to the verifier: di

.= c′π(i) · C(0, r′i)
5: end for
6: Verifier sends to the prover a random bit b ∈R {0, 1}
7: if b = 0 then
8: Prover sends to the verifier: π
9: Prover sends to the verifier: r′1, . . . , r′n

10: for 1 ≤ i ≤ n do
11: Verifier checks that di = c′π(i) · C(0, r′i)
12: end for
13: else
14: Prover sends to the verifier: σ ◦ π
15: for 1 ≤ i ≤ n do
16: Prover sends to the verifier: si

.= rπ(i) + r′i
17: Verifier checks that di = cσ◦π(i) · C(0, si)
18: end for
19: end if

Formally, z ∈ C be a commitment. The prover must show that it knows values x ∈ M and u ∈ R such
that z = C(x, u) and x ∈ Z2k (i.e., that it knows how to open the commitment to a value in the range).

Roughly, the idea behind the protocol is to show that the binary representation of z has only k bits,
by homomorphically constructing an equivalent commitment from k commitments to binary values. The
protocol itself appears as Protocol 5.10.

5.C A Formal Definition of Receipt-Freeness

This section is taken almost verbatim from [55]. This formalization of receipt-freeness is a generalization
of Canetti and Gennaro’s definition (and so can be used for any secure function evaluation), and is strictly
stronger (i.e., any protocol that is receipt-free under this definition is post-factum incoercible as well). The
difference is the adversarial model we consider. Canetti and Gennaro only allow the adversary to query
coerced players players after the protocol execution is complete.

Unfortunately, this “perfect” receipt-freeness is impossible to achieve except for trivial computations.
This is because for any non-constant function, there must exist some party Pi and some set of inputs to the
other parties such that the output of the function depends on the input used by xi. If the adversary corrupts
all parties except for Pi, it will be able to tell from the output of the function what input what used by Pi,
and therefore whether or not Pi was a puppet.

This is the same problem faced by Canetti and Genaro in defining post-factum incoercibility. Like theirs,
this definition sidesteps the problem by requiring that any “coercion” the adversary can do in the real
world it can also do in an ideal world (where the parties’ only interaction is sending their input to an ideal
functionality that computes the function). Thus, before we give the formal definition of receipt-freeness, we
must first describe the mechanics of computation in the ideal and real worlds. Below, f denotes the function
to be computed.

5.C.1 The Ideal World

The ideal setting is an extension of the model used by Canetti and Genaro (the post-factum incoercibility
model). As in their model, there are n parties, P1, . . . , Pn, with inputs x1, . . . , xn. Each party also has a
“fake” input; they are denoted x′1, . . . , x

′
n. The “ideal” adversary is denoted I.

136 CHAPTER 5. SPLIT-BALLOT VOTING

Protocol 5.10 Zero-Knowledge Proof that a Committed Value is in Z2k

Input: Verifier receives z ∈ C, Prover receives x ∈M and u ∈ R such that z = C(x, u), x < 2k.
1: Denote: c0

.= C(0, 0) and c1
.= C(1, 0)

2: Denote: b0, . . . , bk−1 the binary representation of x.
3: Prover chooses values r1, . . . , r2k ∈R R.
4: for 1 ≤ i ≤ 2k do
5: Prover computes and sends to verifier:

di−1
.=

{
C(bi−1, ri) if i ≤ k
C(1− bi−k−1, ri) if i > k

6: end for
7: Prover proves to verifier (using Protocol 5.9) that d0, . . . , d2k−1 is a valid shuffle of c0, . . . , c0︸ ︷︷ ︸

×k

, c1, . . . , c1︸ ︷︷ ︸
×k

{note that this is indeed the case, since there are exactly k commitments to 0 and k commitments to 1}
8: Prover and verifier both compute:

z′
.=
k−1∏
i=0

d2i

i = C

(
k−1∑
i=0

2ibi,
k−1∑
i=0

2iri

)

9: Prover proves to verifier (using Protocol 5.8) that z′ and z are commitments to the same value. {Note
that this is the case, since by the definition of b0, . . . , bk−1, x =

∑k−1
i=0 2ibi}

In our model we add an additional input bit to each party, c1, . . . , cn. We call these bits the “coercion-
response bits”. A trusted party collects the inputs from all the players, computes f(x1, . . . , xn) and broad-
casts the result. In this setting, the ideal adversary I is limited to the following options:

1. Corrupt a subset of the parties. In this case the adversary learns the parties’ real inputs and can
replace them with inputs of its own choosing.

2. Coerce a subset of the parties. A coerced party’s actions depend on its coercion-response bit ci. Parties
for which ci = 1 will respond by sending their real input xi to the adversary (we’ll call these “puppet”
parties). Parties for which ci = 0 will respond by sending the fake input x′i to the adversary.

At any time after coercing a party, the adversary can provide it with an alternate input x′′i . If ci = 1,
the coerced party will use the alternate input instead of its real one (exactly as if it were corrupted).
If ci = 0, the party will ignore the alternate input (so the output of the computation will be the same
as if that party were honest). There is one exception to this rule, and that is if the alternate input is
one of the special values ⊥ or ∗, signifying a forced abstention or forced random vote, respectively. In
this case the party will use the input ⊥, or choose a new, random, input regardless of the value of ci.

I can perform these actions iteratively (i.e., adaptively corrupt or coerce parties based on information gained
from previous actions), and when it is done the ideal functionality computes the function. I’s view in the
ideal case consists its own random coins, the inputs of the corrupted parties, the inputs (or fake inputs) of
the coerced parties and the output of the ideal functionality f(x1, . . . , xn) (where for corrupted and puppet
parties xi is the input chosen by the adversary).

Note that in the ideal world, the only way the adversary can tell if a coerced party is a puppet or not is by
using the output of the computation – the adversary has no other information about the coercion-response
bits.

5.C. A FORMAL DEFINITION OF RECEIPT-FREENESS 137

5.C.2 The Real World

Our real-world computation setting is also an extension of the real-world setting in the post-factum inco-
ercibility model. We have n players, P1, . . . , Pn, with inputs x1, . . . , xn and fake inputs x′1, . . . , x

′
n. The

adversary in the real-world is denoted A (the “real” adversary).
The parties are specified by interactive Turing machines restricted to probabilistic polynomial time.

Communication is performed by having special communication tapes: party Pi sends a message to party Pj
by writing it on the (i, j) communication tape (we can also consider different models of communication, such
as a broadcast tape which is shared by all parties). Our model does not allow erasure; communication tapes
may only be appended to, not overwritten. The communication is synchronous and atomic: any message
sent by a party will be received in full by intended recipients before the beginning of the next round.

We extend the post-factum incoercibility model by giving each party a private communication channel
with the adversary and a special read-only register that specifies its corruption state. This register is
initialized to the value “honest”, and can be set by the adversary to “coerced” or “corrupted”. In addition,
each party receives the coercion response bit ci. We can think of the ITM corresponding to each party as
three separate ITMs (sharing the same tapes), where the ITM that is actually “running” is determined by
the value of the corruption-state register. Thus, the protocol specifies for party Pi a pair of ITMs (Hi, Ci),
corresponding to the honest and coerced states (the corrupt state ITM is the same for all protocols and all
parties).

The computation proceeds in steps: In each step A can:

1. Corrupt a subset of the parties by setting their corresponding corruption-state register to “corrupted”.
When its corruption-state register is set to “corrupted”, the party outputs to the adversary the last
state it had before becoming corrupted, and the contents of any messages previously received. It then
waits for commands from the adversary and executes them. The possible commands are:

• Copy to the adversary a portion of one of its tapes (input, random, working or communication
tapes).

• Send a message specified by the adversary to some subset of the other parties.

These commands allow the adversary to learn the entire past view of the party and completely control
its actions from that point on. We refer to parties behaving in this manner as executing a “puppet
strategy”.

2. Coerce a subset of the parties by setting their corresponding corruption-state register to “coerced”.
From this point on A can interactively query and send commands to the coerced party as it can to
corrupted parties. The coerced party’s response depends on its coercion-response bit ci. If ci = 1, the
party executes the puppet strategy, exactly as if it were corrupted. If ci = 0, it runs the coercion-
resistance strategy Ci instead. The coercion-resistance strategy specifies how to respond to A’s queries
and commands.

3. Send commands to corrupted and coerced parties (and receive responses).

A performs these actions iteratively, adaptively coercing, corrupting and interacting with the parties. A’s
view in the real-world consists of its own randomness, the inputs, randomness and all communication of
corrupted parties, its communications with the coerced parties and all public communication.

5.C.3 A Formal Definition of Receipt-Freeness

Definition 5.7. A protocol is receipt-free if, for every real adversary A, there exists an ideal adversary
I, such that for any input vector x1, . . . , xn, fake input vector x′1, . . . , x

′
n and any coercion-response vector

c1, . . . , cn:

1. I’s output in the ideal world is indistinguishable from A’s view of the protocol in the real world with
the same input and coercion-response vectors (where the distributions are over the random coins of I,
A and the parties).

138 CHAPTER 5. SPLIT-BALLOT VOTING

2. Only parties that have been corrupted or coerced by A in the real world are corrupted or coerced
(respectively) by I in the ideal world.

It is important to note that even though a protocol is receipt-free by this definition, it may still be
possible to coerce players (a trivial example is if the function f consists of the player’s inputs). What the
definition does promise is that if it is possible to coerce a party in the real world, it is also possible to coerce
that party in the ideal world (i.e. just by looking at the output of f).

Bibliography

[1] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based cryptographic voting.
In J. Stern, editor, Proceedings of WPES ’06, the 5th ACM workshop on Privacy in electronic society,
pages 29–40, New York, NY, USA, October 2006. ACM Press.

[2] Dorit Aharonov, Amnon Ta-Shma, Umesh V. Vazirani, and Andrew C. Yao. Quantum bit escrow. In
STOC ’00, pages 705–714, 2000.

[3] Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. Cryptographic randomized response tech-
niques. In PKC ’04, volume 2947 of LNCS, pages 425–438, 2004.

[4] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. John
Wiley & Sons, Inc., 2001.

[5] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

[6] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell, editor,
Proceedings of CRYPTO 1992, 12th Annual International Cryptology Conference, volume 740 of LNCS,
pages 390–420, New York, NY, USA, August 1992. Springer-Verlag Inc.

[7] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, pages 544–553, New York, NY, USA, May 1994.
ACM Press.

[8] Matt Blaze. Cryptology and physical security: Rights amplification in master-keyed mechanical locks.
IEEE Security and Privacy, March 2003.

[9] Matt Blaze. Safecracking for the computer scientist. U. Penn CIS Department Technical Report,
December 2004. http://www.crypto.com/papers/safelocks.pdf.

[10] Manuel Blum. Coin flipping over the telephone. In Proceedings of IEEE COMPCON ’82, pages 133–137,
1982.

[11] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Preneel, ed-
itor, Proceedings of EUROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, volume 1807 of LNCS, pages 431–444, New York, NY, USA, May 2000.
Springer-Verlag Inc.

[12] Debra Bowen. California secretary of state: Voting systems top-to-bottom review, August 2007. http:
//www.sos.ca.gov/elections/elections_vsr.htm.

[13] Jeremy W. Bryans and Peter Y. A. Ryan. A simplified version of the Chaum voting scheme. Technical
Report CS-TR 843, University of Newcastle, 2004.

[14] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product of two
safe primes. In Stern [73], pages 107–122.

139

http://www.sos.ca.gov/elections/elections_vsr.htm
http://www.sos.ca.gov/elections/elections_vsr.htm

140 BIBLIOGRAPHY

[15] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In CRYPTO ’97, volume 1294
of LNCS, pages 90–104, 1997.

[16] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS
’01, pages 136–145, 2001.

[17] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation. In FOCS ’96, pages 504–513,
1996.

[18] Arijit Chaudhuri and Rahul Mukerjee. Randomized Response: Theory and Techniques, volume 85.
Marcel Dekker, 1988.

[19] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, 1981.

[20] David Chaum. Blind signature systems. In David Chaum, editor, Proceedings of CRYPTO 1983, page
153, August 1983.

[21] David Chaum. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE Security & Pri-
vacy, 2(1):38–47, January/February 2004.

[22] David Chaum, 2006. http://punchscan.org/.

[23] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L. Rivest,
Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity ii: End-to-end verifiability for
optical scan election systems using invisible ink confirmation codes. In USENIX/EVT ’08, 2008. http:
//www.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf.

[24] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC ’86,
pages 364–369, 1986.

[25] Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete control pro-
cesses. http://www.cpsc.ucalgary.ca/∼cleve/pubs/martingales.ps, 1993.

[26] Josh D. Cohen(Benaloh) and Michael J. Fischer. A robust and verifiable cryptographically secure
election scheme. In FOCS ’85, pages 372–382, 1985.

[27] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-authority secret-ballot
elections with linear work. In Ueli Maurer, editor, Proceedings of EUROCRYPT 1996, International
Conference on the Theory and Application of Cryptographic Techniques, volume 1070 of LNCS, pages
72–83, New York, NY, USA, May 1996. Springer-Verlag Inc.

[28] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In Fumy [41], pages 103–118.

[29] Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In Fumy [41], pages 306–317.

[30] Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened security assumptions. In
FOCS ’88, pages 42–52, 1988.

[31] Claude Crépeau and Joe Kilian. Discreet solitary games. In CRYPTO ’93, volume 773 of LNCS, pages
319–330, 1994.

[32] Ivan B. Damg̊ard, Serge Fehr, Kiril Morozov, and Louis Salvail. Unfair noisy channels and oblivious
transfer. In TCC ’04, volume 2951 of LNCS, pages 355–373, 2004.

[33] Ivan B. Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on
groups with hidden order. In Yulian Zheng, editor, Proceedings of ASIACRYPT 2002, International
Conference on the Theory and Application of Cryptology and Information Security, volume 2501 of
LNCS, pages 125–142, New York, NY, USA, December 2002. Springer-Verlag Inc.

http://punchscan.org/
http://www.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf
http://www.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf

BIBLIOGRAPHY 141

[34] Ivan B. Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing oblivious transfer and
bit commitment on weakened security assumptions. In Stern [73], pages 56–73.

[35] Persi Diaconis, Susan Holmes, and Richard Montgomery. Dynamical bias in the coin toss, 2004.
http://www-stat.stanford.edu/∼cgates/PERSI/papers/headswithJ.pdf.

[36] Judith A. Droitcour, Eric M. Larson, and Fritz J. Scheuren. The three card method: Estimating
sensitive survey items–with permanent anonymity of response. In Proceedings of the American Statistical
Association, Social Statistics Section [CD-ROM], 2001.

[37] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge. In STOC ’98, pages 409–418,
New York, NY, USA, 1998. ACM Press.

[38] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it. Commun.
ACM, 39(5):77–85, 1996.

[39] Sarah Flannery and David Flannery. In Code: A Mathematical Journey. Algonquin Books of Chapel
Hill, 2002.

[40] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting scheme for large scale
elections. In AUSCRYPT ’92, volume 718 of LNCS, pages 244–251, 1993.

[41] Walter Fumy, editor. Advances in cryptology — EUROCRYPT ’97: International Conference on the
Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11–15, 1997: proceed-
ings, volume 1233 of LNCS, 1997.

[42] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. of the ACM, 38(3):691–729, July 1991.

[43] Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an efficiency improvement.
In Andrew Michael Odlyzko, editor, Proceedings of CRYPTO 1986, volume 263 of LNCS, pages 73–86,
New York, NY, USA, August 1986. Springer-Verlag Inc.

[44] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Yvo Desmedt, editor, Proceed-
ings of PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptography,
volume 2567 of Lecture Notes in Computer Science, pages 145–160, New York, NY, USA, January 2002.
Springer-Verlag Inc.

[45] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic encryption. In Euro-
crypt 2000, volume 1807 of LNCS, pages 539+, 2000.

[46] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based cryptog-
raphy. In FOCS ’89, pages 230–235, 1989.

[47] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In Sabrina De
Capitani di Vimercati and Roger Dingledine, editors, Proceedings of WPES ’05, 2005 ACM workshop
on Privacy in the electronic society, pages 61–70, New York, NY, USA, November 2005. ACM Press.

[48] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting protocols: A systems perspective.
In USENIX Security ’05, pages 33–50, 2005.

[49] Hiroaki Kikuchi, Jin Akiyama, Gisaku Nakamura, and Howard Gobioff. Stochastic voting protocol to
protect voters privacy. In IEEE Workshop on Internet Applications, pages 102–111, July 1999.

[50] Joe Kilian. Founding crytpography on oblivious transfer. In STOC ’88, pages 20–31, 1988.

[51] Hoi-Kwong Lo and H. F. Chau. Why quantum bit commitment and ideal quantum coin tossing are
impossible. In PhysComp ’98, pages 177–187, 1998.

142 BIBLIOGRAPHY

[52] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett.,
78:3414–3417, 1997.

[53] Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. In Lúıs Caires,
Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Proceedings of
ICALP 2005, 32nd International Colloquium on Automata, Languages and Programming, volume 3580
of LNCS, pages 285–297, New York, NY, USA, July 2005. Springer-Verlag Inc.

[54] Tal Moran and Moni Naor. Polling with physical envelopes: A rigorous analysis of a human-centric
protocol. In Serge Vaudenay, editor, EUROCRYPT 2006, pages 88–108, 2006. http://www.wisdom.
weizmann.ac.il/~talm/papers/MN06-crrt.pdf.

[55] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In Cynthia
Dwork, editor, Proceedings of CRYPTO 2006, 26th Annual International Cryptology Conference, volume
4117 of LNCS, pages 373–392, New York, NY, USA, August 2006. Springer-Verlag Inc. http://www.
wisdom.weizmann.ac.il/~talm/papers/MN06-voting.pdf.

[56] Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with distributed trust. In CCS 2007,
pages 246–255, 2007. http://www.wisdom.weizmann.ac.il/~talm/papers/MN07-split-ballot.pdf.

[57] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss: Cleve’s bound is tight, 2008. In
Submission.

[58] Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error correction of truly
random bits. Random Struct. Algorithms, 26(4):418–436, 2005.

[59] Moni Naor, Yael Naor, and Omer Reingold. Applied kid cryptography, March 1999.
http://www.wisdom.weizmann.ac.il/∼naor/PAPERS/waldo.ps.

[60] Moni Naor and Benny Pinkas. Visual authentication and identification. In CRYPTO ’97, volume 1294
of LNCS, pages 322–336, 1997.

[61] Moni Naor and Adi Shamir. Visual cryptography. In Alfredo De Santis, editor, Proceedings of EURO-
CRYPT 1994, Workshop on the Theory and Application of Cryptographic Techniques, volume 950 of
LNCS, pages 1–12, New York, NY, USA, May 1994. Springer-Verlag Inc.

[62] C. Andrew Neff. Practical high certainty intent verification for encrypted votes, October 2004. http:
//www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf.

[63] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel and all/nothing
election scheme. In Eurocrypt ’93, volume 765 of LNCS, pages 248–259. Springer, 1994.

[64] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO
’91, volume 576 of LNCS, pages 129–140, 1991.

[65] Stefan Popoveniuc and Ben Hosp. An introduction to punchscan, 2006. http://punchscan.org/
papers/popoveniuc_hosp_punchscan_introduction.pdf.

[66] Michael O. Rabin. Transaction protection by beacons. J.Computer and System Sciences, 27(2):256–267,
1983.

[67] David J. Reynolds. A method for electronic voting with coercion-free receipt, 2005. Presentation:
http://www.win.tue.nl/~berry/fee2005/presentations/reynolds.ppt.

[68] Peter Y. A. Ryan. A variant of the Chaum voter-verifiable scheme. In Proceedings of WITS ’05, 2005
Workshop on Issues in the Theory of Security, pages 81–88, New York, NY, USA, 2005. ACM Press.

[69] K. Sako and J. Kilian. Receipt-free mix-type voting schemes. In EUROCRYPT ’95, volume 921 of
LNCS, pages 393–403, 1995.

http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-crrt.pdf
http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-crrt.pdf
http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-voting.pdf
http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-voting.pdf
http://www.wisdom.weizmann.ac.il/~talm/papers/MN07-split-ballot.pdf
http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf
http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf
http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://www.win.tue.nl/~berry/fee2005/presentations/reynolds.ppt

BIBLIOGRAPHY 143

[70] Bruce Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/solitaire.html.

[71] Adi Shamir. Cryptographers panel, RSA conference, 2006. Webcast: http://media.omediaweb.com/
rsa2006/1_5/1_5_High.asx.

[72] Sid Stamm and Markus Jakobsson. Privacy-preserving polling using playing cards. Cryptology ePrint
Archive, Report 2005/444, December 2005.

[73] J. Stern, editor. Advances in cryptology — EUROCRYPT ’99: International Conference on the the-
ory and application of cryptographic techniques, Prague, Czech Republic, May 2–6, 1999: Proceedings,
volume 1592 of LNCS, 1999.

[74] Clive Thompson. Can you count on voting machines? New York Times Magazine, January 6 2008.
http://www.nytimes.com/2008/01/06/magazine/06Vote-t.html.

[75] Stanley Warner. Randomized response: a survey technique for eliminating evasive answer bias. Journal
of the American Statistical Association, pages 63–69, 1965.

http://media.omediaweb.com/rsa2006/1_5/1_5_High.asx
http://media.omediaweb.com/rsa2006/1_5/1_5_High.asx
http://www.nytimes.com/2008/01/06/magazine/06Vote-t.html

	Abstract
	Introduction
	Basing Protocols on Tamper-Evident Seals
	Seals in Different Flavours
	Our Results: Theoretical Foundations
	Our Results: Secure Polling Protocols

	Human Aware Voting Protocols
	Receipt-Free Human Verifiable Voting with Everlasting Privacy
	Split-Ballot Voting: Everlasting Privacy With Distributed Trust

	Basing Cryptographic Protocols on Tamper-Evident Seals
	Introduction
	Seals in Different Flavours
	Our Results
	Related Work
	Organization of the Paper

	The Model: Ideal Functionalities
	Ideal Functionalities and the UC Framework
	Tamper-Evident Seals
	Target Functionalities
	Intermediate Functionalities
	Proofs in the UC Model

	Capabilities of the Distinguishable Weak-Lock Model
	A Weakly-Fair Coin Flipping Protocol
	Oblivious Transfer is Impossible
	Bit-Commitment is Impossible

	Capabilities of the Distinguishable Envelope Model
	Oblivious Transfer is Impossible
	Bit Commitment
	A Strongly-Fair Coin Flipping Protocol with Bias O(1r)
	Lower Bound for Strongly-Fair Coin Flipping

	Capabilities of the Indistinguishable Weak-Lock Model
	A (12,13)-Possibly Cheating Weak Oblivious Transfer Protocol

	Proof of Security for Weakly-Fair Coin Flipping Protocol
	Corrupts Bob
	Corrupts Alice

	Proof of Security for Strongly-Fair Coin Flip Protocol
	Corrupts Alice
	Corrupts Bob

	Proof of Security for Remotely Inspectable Seals
	Proof of Security for 12-RIS Protocol (Protocol ??)
	Amplification for Remotely Inspectable Seals

	Proof of Security for Bit-Commitment Protocol
	corrupts Alice (the sender)
	corrupts Bob (the receiver)
	Amplification for Weak Bit Commitment

	Proof of Security for Oblivious Transfer Protocol
	corrupts the receiver
	corrupts the sender

	Discussion and Open Problems
	Zero Knowledge Without Bit Commitment
	Actual Human Feasibility

	Polling With Physical Envelopes
	Introduction
	Our Results
	Related Work

	The Model
	Cryptographic Randomized Response
	Modelling Humans
	Distinguishable Envelopes
	Proofs in the UC Model

	An Informal Presentation of the Protocols
	Pollster-Immune CRRT
	Responder-Immune CRRT

	A Pollster-Immune 34-CRRT Protocol
	Formal Specification
	Proof of Security

	A Responder-Immune 23-CRRT Protocol
	Formal Specification
	Proof of Security

	Strong CRRT Protocols
	Lower Bounds and Impossibility Results

	Discussion and Open Problems
	p-CRRT for General p
	Additional Considerations

	Formal Definition of Distinguishable Envelopes

	Receipt-Free Verifiable Voting With Everlasting Privacy
	Introduction
	Challenges in Designing Voting Protocols
	Our Results
	Previous Work on Voting Protocols

	The Model
	Basic Assumptions
	Participating Parties
	Protocol Structure and Communication Model
	Universal Composability
	Receipt-Freeness
	Timing Attacks

	Informal Protocol Description
	Overview
	A Voter's Perspective
	Behind the Scenes: An Efficient Protocol Based on the Discrete Log Assumption
	Using Generic Commitment

	Abstract Protocol Construction
	Building Blocks
	Protocol Description
	Protocol Security

	Incoercibility and Receipt-Freeness
	The Ideal World
	The Real World
	A Formal Definition of Receipt-Freeness
	Receipt-Freeness of Our Voting Protocol

	Proof of Accuracy and Privacy
	The Ideal World Simulation
	Indistinguishability of Views

	Basing Commit-and-Copy on Standard Commitment
	Protocol Description
	The Ideal-World Simulation
	Indistinguishability of Views

	Discussion

	Split-Ballot Voting
	Introduction
	Our Contributions
	Related Work

	Informal Overview of the Split-Ballot Protocol
	Shuffling Commitments
	Human Capability
	Vote Casting Example
	The Importance of Rigorous Proofs of Security for Voting Protocols

	Underlying Assumptions
	Physical Assumptions
	Cryptographic Assumptions

	Threat Model and Security
	Ideal Voting Functionality
	Receipt-Freeness

	Split-Ballot Voting Protocol
	Setup
	Voting
	Tally
	Universal Verification and Output
	Security Guarantees

	Proof of Accuracy and Privacy Guarantee (Theorem ??)
	Setup Phase
	Voting Phase
	Tally Phase
	Indistinguishability of the Real and Ideal Worlds

	Proof of Receipt-Freeness (Theorem ??)
	Indistinguishability of the Real and Ideal Worlds

	Discussion and Open Problems
	Homomorphic Commitment and Encryption Over Identical Groups
	Modified Pedersen
	Choosing the Parameters

	Zero-Knowledge Proofs of Knowledge
	Proof That Two Commitments Are Equivalent
	Proof of Commitment Shuffle
	Proof that a Committed Value is in Z2k

	A Formal Definition of Receipt-Freeness
	The Ideal World
	The Real World
	A Formal Definition of Receipt-Freeness

